
MNRAS 000, 1–30 (2024) Preprint 28 May 2024 Compiled using MNRAS LATEX style file v3.3

The Shamrock code: I- Smoothed Particle Hydrodynamics on GPUs.

T. David--Cléris,1★ G. Laibe,1,2 and Y. Lapeyre1
1ENS de Lyon, CRAL UMR5574, Universite Claude Bernard Lyon 1, CNRS, Lyon, F-69007, France.
2Institut Universitaire de France

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
We present Shamrock, a performance portable framework developed in C++17 with the SYCL programming standard, tailored
for numerical astrophysics on Exascale architectures. The core of Shamrock is an accelerated parallel tree with negligible
construction time, whose efficiency is based on binary algebra. The Smoothed Particle Hydrodynamics algorithm of the Phantom
code is implemented in Shamrock. On-the-fly tree construction circumvents the necessity for extensive data communications.
In a Sedov blast test performed with 65 billion of particles, Shamrock achieves a single time step in just 7 seconds using the
1024 MI250X GPUs of the Adastra Cluster. This equates to processing 9 billion particles per second, with 64 million particles
per MI250X. The parallel efficiency across the entire cluster is ∼ 92%. The code is publicly distributed on Github � under the
open source CeCILL license.

Key words: Methods: numerical

1 INTRODUCTION

The study of the formation of structures in the Universe is a field
in which non-linear, non-equilibrium physical processes interact at
many different scales, requiring ever greater computing resources to
simulate them, right up to Exascale (one quintillion operations per
second). To increase energy efficiency with acceptable CO2 emis-
sions, recent super computers have been designed with specialised
hardware such as ARM central processing units (CPUs) or graph-
ics processing units (GPUs). Those involve multiple computational
units that perform the same operation on multiple data simultane-
ously through specific instructions (Single Instruction Multiple Data,
or SIMD parallel processing). This type of hardware differs radically
from standard x86 CPUs, requiring a complete rewrite of CPU-based
codes.

Considerable efforts have recently been invested into developing
codes adapted to the new hybrid architectures aimed at Exascale
(e.g. Idefix: Lesur et al. 2023 ; Parthenon: Grete et al. 2022 ;
Quokka: Wibking & Krumholz 2022). The performance of those
codes is conditioned by the rate at which data involved in the solver
can be prepared, explaining the efficiency of grid-based Eulerian
codes developed to date. For example, the multiphysics Godunov
code Idefix uses a fixed grid, so no overhead is required when exe-
cuting the numerical scheme. On the other hand, simulating moving
disordered particles on Exascale architectures is a tremendous chal-
lenge, regardless of whether they are tracers for Eulerian methods,
super particles for Lagrangian methods or interpolation points for
Fast Multiple Moments. The rule of thumb is that performance de-
creases when the number of neighbours increases and when they are
unevenly distributed.

Our code Shamrock is a performance portable framework aim-
ing at hybrid CPU-GPU multi-node Exascale architectures (Sect. 2).

★ E-mail: timothee.david--cleris@ens-lyon.fr

The design of Shamrock makes it appealing for with particle-based
methods such as Smoothed Particle Hydrodynamics (e.g. Hopkins
2015; Price et al. 2018; Springel et al. 2021), while remaining inher-
ently compatible with any distribution of numerical objects (grids,
particles) and numerical schemes (grid-based or Lagrangian). Our
strategy in Shamrock is that the tree used for neighbour search is
never updated, unlike in existing codes. Instead, we are aiming for
a highly efficient fully parallel tree algorithm that allows on-the-
fly building and traversal, for any distribution of cells or particles.
The specific nature of GPU architectures calls for a different design
from the state-of-the-art methods developed for CPUs (e.g. Gafton
& Rosswog 2011). The simulation domain undergoes an initial par-
titioning into sub-domains, fostering communication and interface
exchange through an outer layer of MPI parallelism presented in
Sect. 3. The core of Shamrock is its inner layer of parallelism,
which consists in distributing the operations performed for the hy-
drodynamical solver on a sub-domain over the GPUs using the SYCL
standard. The overall performance of Shamrock hinges on the per-
formance on neighbour finding on a single GPU. Hence the need
for a tree building and traversal procedure that doesn’t bottleneck
the hydrodynamical time step. In Sect. 4, we first present a tree al-
gorithm that has the required level of performance for any number
of objects compatible with current GPU capabilities. It combines
state-of-the-art algorithms on Morton codes (Morton 1966; Lauter-
bach et al. 2009) with specific optimisations, a key feature being the
Karras algorithm (Karras 2012). The resulting tree building time is
negligible. We detail the subsequent implementation of a Smoothed
Particle Hydrodynamics solver (SPH) in Shamrock in Sect. 5, and
present the results obtained on standard astrophysical tests in Sect. 6.
Our implementation is almost identical to that of the Phantom code,
facilitating performance assessments and comparisons on both one
and multiple GPUs (Sect. 7). We discuss potential future directions
for Shamrock in Sect. 8.

© 2024 The Authors

https://github.com/Shamrock-code/Shamrock

2 T. David--Cléris et al.

Figure 1. Numerical integration of an hydrodynamic quantity U involves
finding neighbours 𝑖 (particles, cells), then adding their contributions accord-
ing to the chosen solver 𝐹.

2 THE Shamrock FRAMEWORK

2.1 Modular computational fluid dynamics

Computational fluid dynamics consists in discretising a physical
system of partial differential equations, alongside specifying ini-
tial and boundary conditions. Deterministic numerical schemes can
be viewed as being the combination of neighbour finding and spec-
ified arithmetic (see Fig. 1), and an algorithm capable of operat-
ing on neighbours can provide a generic framework for implement-
ing schemes frequently used in astrophysics, such as Lagrangian
Smoothed Particle Hydrodynamics (SPH), Eulerian Adaptive Mesh
Refinement (AMR) grid-based methods, or others, within the same
structure. This is the very purpose of Shamrock: to abstract opti-
mised neighbour search, in a way that is versatile enough that the
user only needs to provide functionality to write new schemes with
minimal changes. Fig.2 sketches the Shamrock framework: a collec-
tion of libraries connected by standardised interfaces, where models
(CFD solvers or analysis modules) are implemented atop these li-
braries.

2.2 Multi-GPUs architectures: choice of languages and
standards

Modern computer hardware harnesses graphics processing units
(GPUs) as computing accelerators. A typical compute node con-
figuration consists of several GPUs connected to a CPU via a PCI
express or other proprietary interconnect. Each GPU is equipped
with its network card, enabling direct communications from one
GPU to another with the Message Passing Interface (MPI) protocol.
The GPUs themselves are specialised hardware capable of exploit-
ing the full bandwidth of their high speed memory in tandem with
a high compute throughput using SIMT (Single instruction, Mul-
tiple Threads) and SIMD (Single Instruction Multiple Data). This
design renders GPUs more potent and energy-efficient than CPUs,
especially for processing parallelized tasks involving simple, identi-
cal operations. Performing simulations on architectures comprising
thousands of GPUs introduces several challenges: evenly distributing
the workload among the available GPUs (load balancing problem),
communicating data between domains to perform the computation
while moving the communication directly to the GPU if possible
(communication problem), structuring and organising the workload
on the GPU into GPU-executed functions called compute kernels to
make the best use of hardware capabilities (algorithmic problem).
The first two points are are common issues associated with MPI,
while the third is specific to GPU architecture, raising the question
of choosing an appropriate backend.

MPI SYCL C++ STL

Comm Base

Backend

Algs Math

Core

SPH

Godunov

...

Bindings

pybind11

Python

Models :

Figure 2. Internal structure of Shamrock: functionalities for calculating
neighbour finding are organised in different layers of abstraction, enabling
the independent treatment of any numerical scheme (Models).

GPU vendors have developed various standards, languages and li-
braries to handle GPU programming, the most widely used to date for
scientific applications being CUDA and ROCm , which are vendor-
specific. To address the issue of portability, libraries and standard
have been created to enable the same code to be used on any hard-
ware from any vendors. Current options include Kokkos (Trott et al.
2021), Openacc and OpenMP (target). The SYCL standard, released
by Khronos in 2016, is a domain-specific embedded language com-
pliant with C++17, which is compiled to the native CUDA , ROCm
or OpenMP backend. With a single codebase, one can directly tar-
get directly any GPUs or CPUs from any vendors, eliminating the
need for separate code paths for each supported hardware. To date,
the two main SYCL open source compilers are AdaptiveCpp (Al-
pay & Heuveline 2020; Alpay et al. 2022), and OpenAPI/DPC++,
which is maintained by Intel. Among other heterogeneous paralleli-
sation libraries, we use the SYCL standard to develop Shamrock,
since it offers robustness, performance (Markomanolis et al. 2022),
portability (Deakin & McIntosh-Smith 2020; Jin & Vetter 2022) and
potential for durability. SYCL compilers can also generally compile
directly to a native language without significant overhead, deliver-
ing near-native performance on Nvidia, AMD and Intel platforms
(e.g. tests with Gromacs, Alekseenko & Páll 2023; Abraham et al.
2015; Alekseenko et al. 2024). Since C++ code written using SYCL
is compiled directly to the underlying backend (CUDA or ROCm
or others), we harness direct GPU communication and use vendor
libraries directly in the code.

2.3 Elements of software design

Software design of Shamrock relies on

• A modular organisation of the code structured around intercon-
nected cmake projects,
• Python bindings provided through the use of pybind (Jakob et al.

2024),
• Version control development for forking and branching (Git),
• A comprehensive, automated test library handling multiple con-

figurations of compilers, targets and versions,
• Automated deployment of code across machines by the mean

of environment scripts,
• A user-friendly Python frontend for versatility.

Further details are provided in App. A

MNRAS 000, 1–30 (2024)

Shamrock SPH solver 3

3 DOMAIN DECOMPOSITION & MPI

3.1 Simulation box

The three-dimensional volume on which a numerical simulation is
performed can be embedded in a cube, whose edges define axes
for Cartesian coordinates. This cube is often referred as an Aligned
Axis Bounding Box, or AABB , particularly within the ray-tracing
community. The box is parametrised by two values, 𝑟min and 𝑟max,
which are chosen to represent the minimum and maximum possible
coordinates inside the cube in all three dimensions. For convenience,
we shall refer to this AABB as the simulation box of Shamrock.
Within this box, coordinates can be mapped to a grid of integers, by
subdividing the simulation box coordinates into 𝑁g grid points on
each axis, where 𝑁g is a power of two. In pratice, we use 𝑁g = 221

or 𝑁g = 242 (see Sect. 3.5).

3.2 Patch decomposition

The first level of parallelisation in Shamrock consists of dividing
the simulation box into elementary volumes, or subdomains, which
are then distributed across nodes of a computing cluster. For con-
venience, we shall further refer to these subdomains as patches. In
Shamrock, patches are constructed following a procedure of recur-
sive refinement. Starting from the simulation box, patches are divided
into eight patches of equal sizes by splitting in two equal parts the
original patch on each axis. The resulting structure is an octree, where
each node is either a leaf or an internal node with eight children. The
patches managed by Shamrock are the leaves of this octree. We
call this structure the patch octree of Shamrock. The patch octree
is similar to the structure of a three-dimensional grid that has been
adaptively refined (AMR grid). The cells of this AMR grid would
correspond to the patches of Shamrock. Similar to an AMR grid,
patches can be dynamically subdivided or merged.

To each patch 𝑝, we associate an estimated load W𝑝 , which is
an estimate of the time required to perform the computational load
on the patch. The load depends a priori on the type of simula-
tion chosen by the user (e.g. fixed or refined grids, particles, see
Sect. 3.5). If the estimated load of a patch exceeds a maximum
threshold (W𝑝 > Wmax), the patch is subdivided. If the estimated
load is below a minimum threshold (Wmin), the patch is flagged for
a merge operation. In Shamrock, patch merging is performed when
all eight patches corresponding to the same node in the patch octree
are flagged. To avoid cycling between subdivisions and merges, we
enforceWmax > 4Wmin. Hence, the decomposition of the simula-
tion box into patches is only controlled by the values ofWmin and
Wmax. Shamrock maps several patches to a given MPI rank in a
dynamical manner. We call this decomposition an abstract domain
decomposition. In practice, we find that 10 patches per MPI rank
provides a compromise between the level of granularity required
for effective load balancing and the overheads associated with patch
management.

3.3 Data Structure

Each patch in Shamrock is associated with two types of information.
The first type is the patch metadata, which encompasses the current
status, location and identifier of the patch. The second, called patch
data, comprises the data pertaining to the fields processed by the
patch.

3.3.1 Patch metadata

Within Shamrock, metadata is synchronised across all MPI ranks.
This synchronisation is made possible by the use of a class of small
size (80 bytes when compiled). The metadata of a Shamrock patch
is represented in the code with the following class

template<u32 dim>
struct Patch{

u64 id_patch;
u64 pack_node_index;
u64 load_value;

std::array<u64,dim> coord_min;
std::array<u64,dim> coord_max;

u32 node_owner_id;
};

In this class, u32 denotes 32 bits unsigned integers and u64 their 64
bits variants, id_patch the patch unique identifier, load_value the
estimated load of a patch (see Sect. 3.2), coord_min and coord_max
represent edges of the AABB patch on the integer grid, node_owner
the MPI rank owning the current patch. Finally, pack_node_index
is an additional field used to specify that a patch aims to reside in
the same MPI ranks as another one (see section 3.4 for more details).
We also provide a dedicated MPI type to facilitate the utilisation of
collective operations on patch metadata.

3.3.2 Patch data

The patch data of a patch is a list of fields related to a collection of
objects (cells or particles). A field can contain one or multiple values
per object, as long as the number of values per object is constant.
The first field, so-called the main field in Shamrock, must have one
value per object and store the positions of every object in the patch.
Domain decomposition and load balancing are executed based on the
positions stored in the main field. When a patch is moved, split or
merged, the corresponding operations are applied to the other fields as
well. This ensures that communications are implicitly modified when
the layout of the data is changed, eliminating the need for direct user
intervention. For efficient implementation of new physics, the fields
stored in the patch data can encompass a wide range of types (scalar,
vector, or matrices, with float, double, or integer data), arranged in
any order. This versatility is enabled by representing the patch data as
a std::vector of std::variant encompassing all possible field
types. This aspect is abstracted from the user, as only field identifiers
and types are required. One example of such use is

PatchData & pdat = ...
// get the layout of the patch data
PatchDataLayout &pdl = pdat.pdl;
// get id of the field (name and type specified)
// f64_3 is a 3 dimensional double precision vector
const u32 ivxyz = pdl.get_field_idx<f64_3>("vxyz");
// get the field at this id
PatchDataField<f64_3> & vxyz =

pdat.get_field<f64_3>(ivxyz);

3.3.3 Patch scheduler

In Shamrock, a single class is responsible of managing patches,
distributing data to MPI ranks and processing the refinement of the
patch grid. This class contains the patch octree, patch metadata, and

MNRAS 000, 1–30 (2024)

4 T. David--Cléris et al.

patch data. It is referred internally as the PatchScheduler. This
class is only controlled by four parameters: the patch data layout,
which specifies the list of fields and the corresponding number of
variables, the split criterion Wmax and the merge criterion Wmin
that control patch refinement, and the load balancing configuration.
The patch scheduler is designed to operate as a black box for the
user. The user calls the scheduler_step function, which triggers
the scheduler to execute merge, split, and load balancing operations.
The scheduler_step is called at the beginning of every time step
in practice. Multiple ‘for each’ functions are provided in Shamrock
as abstractions for iterating over patches. An example of such use is

PatchScheduler & scheduler = ...

scheduler.for_each_patchdata(
// the c++ lambda contain the operation
// to perform on the patches
[&](const Patch & p, PatchData &pdat) {

// do someting on the patch
}

);

These abstractions shield the end user from interactions with the
MPI layer. The strategy is as follows: one does not need to be aware
of which patches reside on which MPI ranks. Indeed, operations
are conducted solely through ‘for each’ calls to the patches, and the
scheduler handles the other tasks.

3.4 Scheduler step

Fig. 3 illustrates a single scheduler step in Shamrock. During this
step, patch data are exclusively processed on their current MPI rank,
while patch metadata and the patch tree remain unchanged over all
MPI ranks.

3.4.1 Synchronising metadata

The initial operation conducted during a scheduler step consists in
synchronising the metadata across the MPI ranks. This operation,
named vector_allgatherv in Shamrock, is implemented as an
extension of the MPI primitive MPI_ALLGATHER_V (see fig.4). Given
a std::vector in each MPI ranks, vector_allgatherv returns
on all ranks the same std::vector made by concatenating the
input vectors in each ranks. We create an MPI type for the patch
metadata, and use vector_allgatherv to gather all the metadata of
all patches on all MPI ranks. This operation returns the list containing
the metadata of all patches in the simulation (the step ‘Metadata sync’
in Fig.3).

3.4.2 Listing requests

The operation ‘Get requests’ depicted in Fig.3 provides the list of
identifiers for patches requiring merging or splitting. A patch splits
when its estimated load exceeds the split criterion (see Sect.3.2). If
all children of a node in the patch tree meet the merge criterion, they
merge, resulting in the parent node being marked for pending child
merge and consequently transitioning into a tree leaf.

3.4.3 Patch splitting

Subsequent split operations on the metadata and the patch tree are
carried out in each MPI rank. If the MPI rank holds the patch data

Rank 0 Rank 1 Rank 2 Rank 3

Metadata sync

get requests

apply splits

apply mergesapply mergesapply mergesapply merges

load balance

// // //

set pack

load balance load balance load balance

Figure 3. Illustration of a scheduler step. Initially, a synchronisation of the
patch metadata occurs across all MPI ranks, resulting in each rank possessing
an identical list of all patch metadata. Subsequently, each MPI rank generates
a list of split and merge requests. Split requests are then executed, followed by
setting the packing index. The subsequent operation consists in performing
load balancing on all patches. Finally, merge requests are carried out to
complete the step.

associated with the patch being split into eight new patches, the patch
data is then subdivided into eight new patch data objects correspond-
ing to the eight newly formed patches.

3.4.4 Collecting information on ranks

The pack index is a list containing necessary information indicating
whether a given patch a must reside in the same MPI rank as another
patch b. After having executed patch splitting, we then go through
the list of merge operations along the MPI ranks. We use an identifier
that denotes the parent of the eight merging children patches. With
the exception of the first child, all the other children patches have their
pack index set to the index of the first child in the global metadata
list. This signifies that the seven other children patches must be in the
same MPI rank as the first one, which enables the merge operation
to be conducted at a later stage. The pack index is used during the
subsequent load balancing step.

3.4.5 Load balancing

Performing load balancing consists of grouping patches in chunks,
and distributing the chunks appropriately over the MPI ranks for
their computational charge to be as homogeneous as possible. Load
balancing is performed in four sub-steps:

• The load balancing module receives a list of metadata that in-
cludes estimated computational loads. Here, a strategy for patch

MNRAS 000, 1–30 (2024)

Shamrock SPH solver 5

Rank 0 Rank 1 Rank 2 Rank 3

get sizeget sizeget sizeget size

2 2 1 1

MPI_ALLGATHER

2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1

0 2 4 5 0 2 4 5 0 2 4 5 0 2 4 5

MPI_ALLGATHERV([0,2,4,5])

data data data data

Figure 4. Illustration of the steps performed in a vector_allgatherv oper-
ation. Firstly, the size of each sent vector is retrieved. Secondly, all MPI ranks
gather the sizes sent by each other MPI ranks. An exclusive scan is performed
on this list to obtain the offset at which the data of each MPI rank will be
inserted in the final vector. Finally, a MPI_ALLGATHER_V is called using the
provided offsets to retrieve the gathered list in each MPI rank.

reorganisation of patches is computed (see Sect. 3.5 for the details of
the load balancing procedure). The code returns a list specifying the
novel MPI rank assignment for each patch. When compared to the
current owner of each patch, this list identifies necessary changes,
indicating if a patch must move from one MPI rank to another. Ad-
ditionally, this list incorporates the pack index described above.
• The patch reorganisation encoded in the list of changes is sub-

sequently implemented. We iterate through the list of changes a first
time. If the sender MPI rank matches the MPI rank of the current
process, it sends the corresponding patch data using a non-blocking
send of the serialized data (see 3.7 for details).
• We then go through the list of changes for a second time. If

the receiver patch matches the MPI rank of the current process,
we execute an MPI non-blocking receive operation to obtain the
corresponding patch data in the new rank.
• Finally, we finish by waiting for all MPI operations to complete,

thereby concluding the load balancing step.

Generating the list of changes accounts for the pack index. As such,
patches intended for merging together are in the same MPI rank after
the load balancing operation.

3.4.6 Patch merging

Merge operations require for the eight children patches to be in
the same MPI rank, which is garanteed by the packing in the load
balancing step. Similarly to split operations, merges are executed
across both metadata and the patch tree within all MPI ranks. Merging
is also applied to the patch data on the MPI rank that owns the data.

3.5 Load balancing strategies

The load balancing module generates the list of owner of each patch
determined by abstract estimates of its required computational load.
Load balancing is processed consistently across all MPI ranks for
identical inputs. The load balancing module initially utilises the list of
all patch metadata, with the estimated load values as input. Patches are
then arranged along a Hilbert curve, which is subsequently segmented
into contiguous chunks of adjacent patches. The objective of optimal
load balancing is to identify a collection of chunks wherein the
workload is distributed as evenly as possible across all MPI ranks.

To achieve this, various load balancing strategies are dynamically
evaluated in Shamrock (e.g. analytic decomposition, round-robin
method), and the one found to be the most effective is selected.
The computational overhead involved in assessing the benefits of
different load balancing strategies is minimal, since it relies on simple
estimations. This process yields a list specifying the new MPI ranks
for each patches. This list is compared against the current distribution
of patches to generate the change list when load balancing is applied.

3.6 Patch interactions

3.6.1 Interaction criteria

For a given collection of objects (cells or particles), we can establish
a condition indicating whether objects 𝑖 and 𝑗 interact, and define a
Boolean interaction criterion 𝛾𝑜/𝑜 (𝑖, 𝑗) to signify this condition. For
example, in the Smoothed Particle Hydrodynamics method, 𝛾𝑜/𝑜 is
defined as true when particle 𝑖 is within the interaction radius of
particle 𝑗 , or vice versa.

A first generalisation of this object-object criterion is an object-
group criterion, which describes if there is interaction between an
object and a group of objects. A necessary condition for such a
criterion is

𝛾𝑜/𝑔 (𝑖, { 𝑗} 𝑗) ⇐
∨
𝑗

𝛾𝑜/𝑜 (𝑖, 𝑗)

This condition formally expresses the fact that if the interaction cri-
terion is fulfilled for any object in the group, it must also hold true
for the entire group. Failure to meet this condition would imply the
possibility of interaction with an element of the group without in-
teraction with the group as a whole, which is incorrect. Both the
object-object and group-object criteria are used in the tree traver-
sal step. 4.12. Another extension of the aforementioned criteria is
the group-group interaction criterion, which similarly satisfies the
following condition

𝛾𝑔/𝑔 ({𝑖}𝑖 , { 𝑗} 𝑗) ⇐
∨
𝑖

𝛾𝑜/𝑔 (𝑖, { 𝑗} 𝑗)

This latter condition is used to manage ghost zones (see Sect. 3.6.2)
and perform two-stages neighbour search (see Sect. 4.14).

MNRAS 000, 1–30 (2024)

6 T. David--Cléris et al.

Sender patch

R
ec

ei
ve

r
p

at
ch

Figure 5. Matrix of the interaction graph between patches extracted from an
SPH simulation of a protoplanetary disc, involving several hundred patches.
Empty patches have been excluded from the graph as they do not meet any
interaction criteria due to their emptiness. The resulting interaction matrix is
symmetrical and sparse. This visualisation was generated using a debug tool
in Shamrock, which creates a dot graph representing the ghost zones of the
current time step, which can be rendered in its matrix form here showed.

3.6.2 Interaction graph

Patches themselves are objects that can interact. Their interaction is
handled using a group-group interaction criterion 𝛾𝑔/𝑔. The interac-
tion criterion of an empty patch is always false. After assessing the
interaction status between all pairs of patches, we define the inter-
action graph of the patches by considering the list of links such that
the group-group interaction criterion 𝛾𝑔/𝑔 is true. Fig. 5 shows an
example of such a graph of interactions between patches.

3.6.3 Interfaces and ghost zones patch

We define the interface between two patches as the smallest set of
individual objects for which the group-group interaction criterion
between their parent patches is satisfied. To reduce communications
between interacting patches, we communicate not the entire patch
content to its neighbour, but only their interfaces. These communi-
cated interfaces consequently manifest as ghost extensions for the
neighbouring patch and are therefore called ghosts zones of patches.
The graph of ghost zones between patches is the same as the interac-
tion graph, with links between vertices representing the ghost zone
of one patch being sent to another patch.

3.7 Serialisation

In Shamrock, all communications are serialised, i.e. converted into
a stream of bytes to reduce the MPI overhead by performing less
operations, and shield the user from the MPI layer. To send a patch
ghost zone, data are initially packed into a byte buffer. Communica-
tion patterns and operations remain therefore unchanged, regardless
of the communication content. In particular, the addition of a field
simply adds extra data to the serialisation without altering the com-
munication process.

// Data to be serialized
std::string str = "exemple";
sycl::buffer<f64_3> buffer = ...;
u32 buf_size = buffer.size();

SerializeHelper ser;

// Compute byte size of header and content
SerializeSize bytelen =

ser.serialize_byte_size<u32>()
+ ser.serialize_byte_size<f64_3>(buffer.size())
+ ser.serialize_byte_size(test_str);

// Allocate memory
ser.allocate(bytelen);

// Write data
ser.write(buf_size);
ser.write_buf(buffer, n2);
ser.write(test_str);

// Recover the result
sycl::buffer<u8> res = ser.finalize();

// The byte buffer
sycl::buffer<u8> res = ...;

// Give the buffer to the helper
shamalgs::SerializeHelper ser(std::move(res));

// Recover buffer size
u32 buf_size;
ser.load(buf_size);

// Allocate buffer and load data
sycl::buffer<f64_3> buf (buf_size);
ser.load_buf(buf, buf_size);

// Read the string
std::string str;
ser.load(recv_str);

Serialisation in Shamrock relies on a split header data approach.
Individual values are stored in the header on the CPU, while buffer
data is stored on the device (CPU or GPU). This organisation ensures
that individual value reads incurs minimal latency, thus avoiding high
GPU load latency. The entire buffer is only assembled on the device
at the end of the serialisation procedure. During deserialisation, the
header is initially copied to the CPU. To circumvent constraints im-
posed by the CUDA backend, all reads and writes are adjusted to
8-byte length.

3.8 Sparse MPI communications

In hydrodynamical simulations, interactions among objects are pre-
dominantly local, resulting in each patch being connected to only a
limited number of other patches in the interaction graph. A crucial
element of communication management in Shamrock is to uphold
this sparsity. With synchronised metadata, each MPI ranks holds
information of the MPI rank to which every patch belongs. We there-
fore group communication between patches involving the same pair
of MPI ranks in a single patch message (see Fig. 6). The graph
corresponding to patch messages to be communicated is also sparse
(rank 𝑖 ↦→ rank 𝑗). We therefore apply a MPI operation that extends
MPI_Alltoall to accommodate a sparse graph structure. The op-
eration, referred to as sparse all-to-all, is structured as depicted in
Fig. 7. Initially, we compile the list of communications to be ex-

MNRAS 000, 1–30 (2024)

Shamrock SPH solver 7

Patch 0

Patch 1

Patch 2

Patch 3

Rank 0

Rank 1

pack unpacksparse all-to-all

patch message
(serialized)

patch message
(serialized)

MPI message
(bytes)

MPI message
(bytes)

Sp
ar

se
 a

ll-
ot

-a
ll

Figure 6. Illustration of the behaviour of a MPI sparse communication of patches in Shamrock. The first step consists of packing communication between a
same pair of MPI ranks together. Subsequently, a sparse all-to-all operation is executed (see Fig.7). Finally, the received buffers are unpacked.

Rank 0

Rank 1

MPI message
(bytes)

MPI message
(bytes)

ve
ct
or
_a
ll
ga
th
er
v

isend

isend

irecv

irecv MP
I_
WA
IT

exchange
message list

non blocking
exchange

wait events

communication
skipped

communication
skipped

Figure 7. Illustration of the behaviour of a MPI sparse all-to-all communication in Shamrock. Firstly, a vector_allgatherv is performed on the list of
communication. Subsequently, each rank executes a non-blocking send of its data. To prepare for receiving, a non-blocking receive is launched for every
incoming message. The operation is concluded by waiting for all non-blocking operation to finish. Communications for an MPI rank to itself are skipped by
simply relocating the data within the rank.

ecuted on each node. Subsequently, on each node, we go through
the communication list and execute a non-blocking MPI send if the
sender’s rank matches the current MPI rank. Following this, on each
node, we go through the communication list once more and initiate a
non-blocking MPI receive if the recipient’s rank aligns with the cur-
rent MPI rank. Finally, we conclude the operation by invoking a MPI
wait on all non-blocking communication requests. Exchanges within
the patch ghost zone graph are finalised once the sparse all to all

operation is completed. If the sender’s MPI rank matches that of the
recipient, the communication is disregarded, and an internal memory
move is executed instead. Another approach could involve using an
MPI reduce operation to count the number of messages received,
and trigger the corresponding number of non-blocking receives with
MPI_ANY_SOURCE. Given the limited number of communications,
we observe no practical distinction between the two methods in prac-
tice. Moreover, the former approach is easier to debug and optimise,

MNRAS 000, 1–30 (2024)

8 T. David--Cléris et al.

Table 1. List of symbols used in Sect. 4.

Symbol Definition Meaning

𝑥, 𝑦, 𝑧 Sect. 4.1 particle coordinates
𝑋,𝑌 , 𝑍 Sect. 4.1 integer particle coordinates

𝛽 Sect. 4.1 bit count
X0X1 · · · X𝛽−1 Sect. 4.1 binary representation of 𝑋

𝑚 X0Y0Z0 · · · generic Morton code
𝑚1 ≡ 0101 Sect. 4.2 Morton code example 1
𝑚2 ≡ 0111 Sect. 4.2 Morton code example 2
𝛿 (𝑎, 𝑏) eq.2 Karras 𝛿 operator
clz(𝑎) Sect. 4.4 count leading zeros
𝑎 ˆ𝑏 Sect. 4.4 bitwise XOR operator
𝑎 & 𝑏 Sect. 4.5 bitwise AND operator
𝑎 « 𝑏 Sect. 4.5 left bitshift operator

r𝑖 position of particle 𝑖
𝑚𝑖 Morton code of particle 𝑖
{𝜇𝑖 }𝑖 𝜇𝑖 = 𝑚𝜖𝑖 sorted Morton codes
𝜖𝑖 sort : 𝜖𝑖 ↦→ 𝑖 sort inverse permutation
𝜉𝑖 Sect. 4.9 Morton-keep mask
id𝑖 indexes of kept Morton codes
𝜇leaf,𝑖 tree leaf Morton codes

since it eliminates the need for sorting data to ensure determinism in
the list of received messages.

4 THE Shamrock TREE

Specific notations used in this Section are given in Table 1.

4.1 Morton codes

In hydrodynamic simulations, physical fields are represented on a
discrete set of elementary numerical elements such as grid cells or
interpolation points (or numerical objects for a generic terminol-
ogy). The positions of these objects are represented by coordinates,
usually stored as floating point numbers such as (𝑥, 𝑦, 𝑧) in three
dimensions. These coordinates are usually sampled on a 3D inte-
ger grid, which in turn can be mapped onto a 1D integer fractal
curve. The Morton space-filling curve, also called Morton order-
ing, is commonly used for this purpose since it has a natural dual-
ity with a tree structure (e.g. Samet 2006, see below). In practice,
Morton ordering can be constructed from a list of 3D positions as
follows. First, the real coordinates in each dimension are remapped
over the interval [0, 1)3 (note the exclusion of the value 1) by doing
𝑥 ↦→ (𝑥 − 𝑥min)/(𝑥max − 𝑥min), and a similar procedure is applied
for 𝑦 and 𝑧 respectively. This unit cube is then divided into a 3D grid
of (2𝛽)3 elements, where 𝛽 is the number of bits used to represent
integers. Within this grid, the objects possess integer coordinates
(𝑋,𝑌, 𝑍) ∈ [0, 2𝛽 −1]3. These integer coordinates are noted in their
binary representation 𝑋 = X0X1X2 · · · , where X𝑖 denote the value
of the 𝑖th bit (the same convention also applies for 𝑌 and 𝑍). The
Morton space-filling curve comprises a sequence of integers, called
Morton codes (or Morton numbers), defined through the following
construction in a binary basis: the Morton code 𝑚 of each object is
obtained by interleaving the binary representation of each coordinate
𝑚 ≡ X0Y0Z0X1Y1Z1X2Y2Z2 · · · X𝛽−1Y𝛽−1Z𝛽−1.

By default, and unless specified otherwise, Morton codes are pre-
sented in binary notation, while other integers are expressed in deci-
mal hereafter. A Morton code can also be interpreted as an ordered

position on an octree with 𝛽+1 levels, or alternatively as a position in
a binary tree with 3𝛽+1 levels (Fig. 8). To illustrate this duality, let us
consider the first bit X0 of a Morton code. If X0 = 0, the integer coor-
dinate 𝑋 belongs to the half space where 𝑋 < 2𝛽−1−1. If X0 = 1, the
integer coordinate 𝑋 belongs to the other half space 𝑋 ≥ 2𝛽−1 − 1.
The following bits𝑌0 and 𝑍0 divide the other dimensions in a similar
way. The next sequence of bits 𝑋1, 𝑌1, 𝑍1 subdivides the subspace
characterised by 𝑋0, 𝑌0, 𝑍0 in a similar manner, and the construction
of a tree follows recursively. After going through all bits and reaching
X𝛽−1Y𝛽−1Z𝛽−1, one is left with the exact position in the space of
integer coordinates. This tree structure consists of nested volumes
where each parent volume encompasses all its children, forming as
such a Bounded Volume Hierarchy (BVH).

4.2 Prefixes

A prefix is the sequence of the first 𝛾 ≤ 𝛽 bits of a Morton code.
One defines the longest common prefix of two Morton codes 𝑎 and
𝑏 as the sequence of matching bits starting from 𝑋0 until two bits
differ. As an example, the longest common prefix of 𝑚1 ≡ 0101 and
𝑚2 ≡ 0111 is 01. The longest common prefix of two Morton codes
gives the minimal subspace of the integer 3D grid that contains the
two Morton codes. The number of bits used to represent the longest
common prefix of 𝑎 and 𝑏, called the length of the longest common
prefix of 𝑎 and 𝑏, is denoted 𝛿 (𝑎, 𝑏).

4.3 Bounding boxes

We use the terminology prefix class to refer to a set of Morton codes
that have common prefixes. The longest common prefix of any pair
of elements in a prefix class is at least of length 𝛾 (or equivalently,
for any pair of Morton code 𝑎, 𝑏 in the prefix class, 𝛿(𝑎, 𝑏) ≥ 𝛾).

Each prefix class corresponds to an axis aligned bounding box
in the space of integer positions, having for generic coordinates
[𝑥min, 𝑥max) × [𝑦min, 𝑦max) × [𝑧min, 𝑧max) (Fig. 8). We refer to the
set of three integers representing the lengths of the edges of this
bounding box as the size of the bounding box. Mathematically,

s(𝛾) =
{
2𝛽−⌊𝛾/3⌋ , 2𝛽−⌊ (𝛾−1)/3⌋ , 2𝛽−⌊ (𝛾−2)/3⌋

}
, (1)

where ⌊·⌋ denotes the floor function of a real number. Indeed, for
a given 𝛾, the Morton construction divides the 𝑥-axis ⌊𝛾/3⌋ times,
the 𝑦-axis ⌊(𝛾 − 1)/3⌋ times and the 𝑧-axis, ⌊(𝛾 − 2)/3⌋ times. The
exclusion of the upper bounds in the bounding box ensures that the
size on each coordinate axis is a power of 2. Similarly, we define the
largest common prefix class between two Morton codes 𝑎, 𝑏 as the
prefix class corresponding to the longest common prefix between 𝑎

and 𝑏. The size of the corresponding bounding box is then denoted
s(𝑎, 𝑏) = s (𝛿(𝑎, 𝑏)).

4.4 Longest common prefix length

The length of the longest common prefix of two Morton codes 𝑎 and
𝑏 is given by (Karras 2012)

𝛿 (𝑎, 𝑏) ≡ clz (𝑎 ˆ𝑏) . (2)

Eq. 2 involves two binary operators. The first one is the bitwise XOR ˆ
operator (Exclusive OR), that returns the integer formed in binary by
zeros where the bits match and ones when they differ. As an example,

𝑚1 ˆ𝑚2 = 0010, (3)

MNRAS 000, 1–30 (2024)

Shamrock SPH solver 9

Figure 8. Illustration of the duality between Morton codes and the structure of an octree. 3 bits can describe the procedure of dividing a cube into eight smaller
cubes. Repeating the procedure with triplets of additional bits produces an octree.

since 𝑚1 and 𝑚2 differ only by their third bit. The second operator is
Count Leading Zeros. clz operates on a binary integers and returns
the numbers of zeros preceding the first 1 in the binary representation.
As an example,

clz(0010) = 2. (4)

Following this example, the longest common prefix of 𝑚1 ≡ 0101
and 𝑚2 ≡ 0111 is 01 and is of length 2. Eqs. 3–4 allow performance,
since instructions clz and XOR use only one CPU or GPU cycle
on modern architectures. Getting the length of the longest common
prefix take only 2 cycles with such procedure (e.g. a xor followed by
lzcnt on Intel Skylake architectures).

4.5 Finding common prefixes

To find the longest common prefix between two Morton codes 𝑎 and
𝑏, we first construct a mask 𝑐, which is an integer where the first
𝑝 = 𝛿 (𝑎, 𝑏) bits are set to 1 while the remaining bites are set to 0.
For example, applying this mask to the two Morton codes 𝑚1 and 𝑚2
from our previous example yields 1100. To generate the mask, we
take advantage of the bitwise shift-left operator. The bitwise shift-
left operator 𝑎 « 𝑖 returns the binary representation of 𝑎 where the
bits are shifted by 𝑖th bits to the left, and zeros are introduced in
place of non existing bits. Consider 𝑢, the integer having only ones
in binary representation (i.e 𝑢 = 2𝛽 − 1, where 𝛽 is the size of
the binary representation). 𝑐 is obtained with the following binary
operation 𝑢 « (𝛽 − 𝛿 (𝑎, 𝑏)). In our previous example, 𝛽 = 4 and
𝛽− 𝛿 (𝑚1, 𝑚2) = 2 gives 1111 « 2 = 1100. Consider now the bitwise
AND operator, denoted by &, that returns the integer formed in binary
by ones where the bits match and zeros when they differ (& is the
bitwise negation of the bitwise XOR operator). When applying the
bitwise AND between 𝑚1 or 𝑚2 and the mask, the result is a binary
number where the first bits are the prefix and the subsequent bits are
zeros. As an example, applying the bitwise AND between 𝑚2 and the
mask yields 0111 & 1100 = 0100.

4.6 Getting coordinates sizes of bounding boxes

Consider the prefix class formed by Morton codes whose longest
common prefix with 𝑎 (or equivalently 𝑏) is 𝛿 (𝑎, 𝑏). This prefix
class is a set of binary numbers whose smaller and larger values,

denoted 𝑝0 and 𝑝1 respectively, are given by

𝑝0 (𝑎, 𝑏) ≡
(
2𝛽 − 1 « 𝛽 − 𝛿(𝑎, 𝑏)

)
& 𝑎, (5)

𝑝1 (𝑎, 𝑏) ≡
(
2𝛽 − 1 « 𝛽 − 𝛿(𝑎, 𝑏)

)
& 𝑎 +

(
2𝛽−𝛿 (𝑎,𝑏) − 1

)
. (6)

These two Morton codes correspond to two integer coordinates, de-
noted p0 and p1, that are the coordinates of the lower and upper
edges of the bounding box, respectively. The size of the bounding
box corresponding to this prefix class is

s(𝑎, 𝑏) = p1 (𝑎, 𝑏) − p0 (𝑎, 𝑏) + (1, 1, 1). (7)

4.7 Binary radix tree

A binary radix tree is a hierarchical representation of the prefixes of
a list of bit strings, corresponding here to the binary representation
of integers (e.g. Lauterbach et al. 2009; Karras 2012). The tree is
defined by a set of hierarchically connected nodes, where nodes
without children are called leaf nodes or leaves (light orange circles
on Fig. 9), and the others ones are called internal nodes (blue circles
on Fig. 9). The binary radix tree is a complete binary tree: every
internal node has exactly two children. As such, a tree having 𝑛

leaves has exactly 𝑛 − 1 internal nodes. This property allows to
know lengths of tables in advance, making it particularly beneficial
for GPU programming where dynamic allocation is not feasible.
One commonly acknowledged downside of this tree structure is the
challenge of efficient hierarchical construction (Lauterbach et al.
2009; Karras 2012). The deeper one goes down the tree, the longer the
length of the common prefix of the Morton codes. The corresponding
bounding boxes for each node in the tree are nested and become
progressively smaller as one goes down the tree, while the length of
the common prefixes increases. The corresponding radix tree forms
a Bounding Volume Hierarchy, since each child in the bounding box
is contained within the box of its parents.

4.8 Karras algorithm

The Karras algorithm overcomes this difficulty with a fully parallel
algorithm that constructs a binary radix tree, in which the list of
bit strings is a sorted list of Morton codes without any duplicates
Karras (2012). Fig. 9 shows a typical binary radix tree constructed
by the Karras algorithm. The integers within the light orange circles
represent the indices of the Morton codes in the sorted list, and
they also are the indices of the corresponding leaves in the tree. The

MNRAS 000, 1–30 (2024)

10 T. David--Cléris et al.

0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 0 1 1 1 1
0 0 1 1 0 1 1 0 0 0 1 1
0 1 0 1 0 0 1 0 0 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11

0

1 2

3 4

5

6 7

8

9 10

()

(000) (001)

(00) (01)

(011)

(0) (1)

(11)

(110) (111)

Figure 9. The Karras Algorithm associates a structure of radix tree to a sorted
list of unduplicated Morton codes (depicted here within rectangles). Within
this tree, nodes can be either leaves, denoted by integers in light orange circles,
or internal nodes, indicated by integers in blue circles. The grey bars represent
the ranges of Morton codes covered by each internal node. Common prefixes
of these Morton codes are shown in brackets.

integers within the blue circles denote the indices of the internal
nodes, their value come as a by-product of the algorithm. The grey
bars denote intervals of leaf indices corresponding to any Morton
code contained in the sub-tree beneath an internal node that shares
the same common prefix. In Fig. 9, these prefixes are shown in
brackets over the grey bars. The deeper the position in the tree, the
longer the prefix. Consider the subset of Morton codes associated to
an internal node. The Karras algorithm divides this list in two sub-
lists (arrows Fig. 9), each with a longer common prefix compared
to the original. Such a split is unique. Several tables are associated
to the construction of Fig. 9. Those are presented on Table 2. The
split associated to an internal node provides two numbers called
the indices of the left and right children respectively, denoted as
left-child-id and right-child-id respectively. A priori, these
indices can correspond to either an internal node or a leaf. This
distinction is encoded by the value the integers left-child-flag
and right-child-flag, where a 1 means that the corresponding
child is a leaf and a 0, an internal node. The grey bar of an internal
node has two ends. One corresponds to the index of the node itself,
while the other is stored in endrange. Although this value is of
no use in the construction of the tree itself, will be important later
for calculating the sizes of a bounding box associated to a prefix
class and for iterating over objects contained in leafs. The Karras
algorithm performs dichotomous searches to compute the values
of Table 2 in parallel, with no prerequisites other than the Morton
codes (we refer to the pseudo-code of the algorithm in Karras 2012
for details). Its efficiency relies firstly on the ability to pre-allocate
tables before building the tree, and secondly on the sole use of the 𝛿

operator defined in Sect. 4.4, which requires just 2 binary operations
on dedicated hardware.

4.9 Removal of duplicated codes

As mentioned in Sect. 4.8, the Karras algorithm requires a sorted list
of Morton codes without duplicates (line 1-5 in alg.1). To achieve
this, we go through the list of sorted Morton codes and compute a
mask to select the Morton codes to retain. The list of Morton codes

Internal cell id 0 1 2 3 4 5 6 7 8 9 10

left-child-id 6 0 2 1 4 5 3 7 9 8 10
right-child-id 7 1 3 2 5 6 4 8 10 9 11
left-child-flag 0 1 1 0 1 1 0 1 0 1 1
right-child-flag 0 1 1 0 0 1 0 0 0 1 1

endrange 11 0 3 0 6 6 0 11 11 8 11

Table 2. Tables corresponding to the tree shown on Fig. 9 as returned by the
Karras algorithm.

without duplicates corresponds to the leaves of the tree obtained after
applying the Karras algorithm to construct the radix tree.

Algorithm 1: Removal mask initialisation and reduction al-
gorithm
Data: {𝑚𝑖}𝑖∈[0,𝑛) The morton codes.
Result: {𝜉𝑖}𝑖∈[0,𝑛) The mask list.

// Flag removal of duplicates

1 for 𝑖 in parralel do
2 if 𝑖 == 0 then
3 𝜉𝑖 ← true;
4 else
5 𝜉𝑖 ← 𝑛𝑜𝑡 (𝑚𝑖 = 𝑚𝑖−1);

// Reduction passes

6 for 𝑛𝑟𝑒𝑑 reduction steps do
7 for 𝑖 in parralel do

// Get kept morton codes indexes

8 𝑖−1 ← 𝑖 − 1;
9 while (𝜉𝑖−1 = false & 𝑖−1 ≥ 0) do

10 𝑖−1 ← 𝑖−1 − 1;
11 𝑖−2 ← 𝑖−1 − 1;
12 while (𝜉𝑖−2 = false & 𝑖−2 ≥ 0) do
13 𝑖−2 ← 𝑖−2 − 1;
14 𝑖+1 ← 𝑖 + 1;
15 while (𝜉𝑖+1 = false & 𝑖+1 < 𝑁𝑚𝑜𝑟𝑡𝑜𝑛) do
16 𝑖+1 ← 𝑖+1 + 1;

// Reduction criterion

17 𝛿0 ← 𝛿(𝜇𝑖 , 𝜇𝑖+1);
18 𝛿−1 ← 𝛿(𝜇𝑖−1 , 𝜇𝑖);
19 𝛿−2 ← 𝛿(𝜇𝑖−2 , 𝜇𝑖−1);
20 if 𝑛𝑜𝑡 (𝛿0 < 𝛿−1 & 𝛿−2 < 𝛿−1) & 𝜉𝑖 = true then
21 𝜉𝑖 ← true;
22 else
23 𝜉𝑖 ← false;

4.10 Reduction

In certain situations, an object may interact with a large number of
neighbours, resulting in multiple leaves containing these neighbours
for the object. One such situation arises frequently in a Smoothed
Particle Hydrodynamics solver, where each particle typically inter-
acts with an average of ∼ 60 neighbours. One optimisation strategy
to speed up the tree traversal consists in reducing the number of
leaves containing these 60 neighbours by grouping some leaves at
the lower levels of the tree before applying the Karras algorithm.
We have integrated a so-called step of reduction to achieve this. The
resulting tree mirrors the initial one, but with grouped leaves.

MNRAS 000, 1–30 (2024)

Shamrock SPH solver 11

Algorithm 2: Leaf object iteration
Data: id𝑖 The leaf index map.
𝑖 the leaf index we want to unpack

1 for 𝑗 ∈ [𝑖𝑑𝑖 , 𝑖𝑑𝑖+1) do
2 𝑘 ← 𝜖 𝑗 // index map of the sort

3 F (𝑘)

Internal logicPublic buffers

To morton

Bitonic sort

reduction +
duplicate

Stream
compaction

Select morton

Karras alg.

Compute cell
range (int)

Convert cell range
(int to float)

Figure 10. Flowchart illustrating the tree-building procedure, indicating the
interdependence between each algorithm (grey boxes) and the related buffers
(orange boxes). The internal logic box corresponds to the part of the algorithm
inaccessible to the user. Buffers depicted outside this box are structures used
in other parts of the code.

To perform reduction, we require a criterion determining when two
leaves, each containing two Morton codes, can be removed to yield
the internal cell positioned just above them. This procedure is carried
out using Alg.1: if a Morton code constitutes the second leaf of a
shared parent, then it is removable. This property is implemented
in the radix tree by verifying when 𝛿(𝜇𝑖−2 , 𝜇𝑖−1) < 𝛿(𝜇𝑖−1 , 𝜇𝑖) >
𝛿(𝜇𝑖 , 𝜇𝑖+1). When this condition is satisfied, the Morton code 𝑖 is re-
movable. The reduction step modifies the Morton tree list associated
to the initial tree built. The tree is therefore already reduced when it
is built and has never had any additional nodes.

4.11 Tree building

Fig. 10 outlines the tree building algorithm of Shamrock. initially,
Morton codes are generated from coordinates and efficiently sorted
while eliminating duplicates. Morton tables are then prepared and
pre-processed (a summary of these steps is sketched in Fig. 11)
before filling the values characterising the tree as in Table 2. The
lengths associated to the coordinates of the cells are finally calcu-
lated. The algorithms described in this section are implemented using
C++ metaprogramming, enabling versatile use of any kind of spatial
coordinates in practice.

Compute Morton codes

Morton codes are calculated entirely in parallel (step "To Morton"
in Fig.10). Initially, a buffer storing the positions of the elementary

r𝑖 = r0 r1 r2 r3 r4 r5 r6

to morton

𝑚𝑖 = 011 000 001 100 011 000 010

sort (𝜇𝑖 = 𝑚𝜖𝑖)

𝜇𝑖 = 000 000 001 010 011 011 100

compute mask & reduction

𝜉𝑖 = 1 0 1 1 1 0 1

stream compaction

id𝑖 = 0 2 3 4 6 7

Select morton codes

𝜇𝑙𝑒𝑎 𝑓 ,𝑖 = 000 001 010 011 100

T. Karras algorithm

Figure 11. The cyan slot in the id𝑖 row is the total lenght of the input array.
𝜖𝑖 is the resulting permutation applied by the sort algorithm.

numerical elements is allocated. These positions are mapped to an
integer grid following the procedure described in Sect. 4.1. The
construction is tested by appropriate sanity checks. The resulting
integer coordinates are converted to Morton codes in a Morton code
buffer (𝑚𝑖 in Fig.10).

Sort by Key

Initially, the list of Morton codes corresponding to the positions of
elementary numerical elements is unsorted. A key-value pair sorting
algorithm is therefore used to sort the Morton codes while keeping
track of the original index of the object within the list. For this task,
we use a GPU Bitonic sorting algorithm that we have re-implemented
using Sycl. The Bitonic algorithm is simple and its performance is
not heavily reliant on the hardware used (step "Bitonic sort"
in Fig.10, see e.g. Batcher 1968; Nassimi & Sahni 1979). While
more efficient alternatives have been suggested in the literature, our
observation is that they are more difficult to implement and are not
as portable across architectures (e.g. Arkhipov et al. 2017; Adinets
& Merrill 2022).

Reduction

From the sorted list of Morton codes, we remove duplicates and apply
reduction with a procedure in two steps. In the first step, we generate
a buffer of integers where each value is 1 if the Morton code is
retained at a given index and 0 otherwise. This information is stored
in a buffer called Keep Morton flag buffer (𝜉𝑖 in Fig.10). In the second
step, we use this buffer to perform a stream compaction algorithm
(e.g. Blelloch 1990; Horn 2005, see example in Fig. 11) to construct
simultaneously two lists: a list of Morton codes without duplicates,
and the list of the indices of the preserved Morton code prior stream
compaction. The stream compaction algorithm heavily depends on
an internal exclusive scan algorithm. This algorithm, when applied

MNRAS 000, 1–30 (2024)

12 T. David--Cléris et al.

to the array {𝑎𝑖}𝑖∈[0,𝑛] returns the array {∑𝑖−1
𝑗=0 𝑎 𝑗 }𝑖∈[1,𝑛] and 0

when 𝑖 = 0. In our case, we implemented the single-pass prefix sum
with decoupled look-back algorithm (Merrill & Garland 2016).

Compute tree tables

At this point, we have a set of Morton codes sorted without duplicates.
We then apply the Karras algorithm described in Sect. 4.8 to generate
in parallel the tables from which the properties of the tree can be
reconstructed (listed on Table 2).

Compute tree cell sizes

We define a tree cell as the bounding box that corresponds to the
Morton codes of the leaves under a given node. This node can either
be an internal node or a leaf. Tree cells are therefore the geometric
representation of the tree, and needs to be computed for neighbour
finding (see Sect. 4.12). In practice, it is sufficient to compute the
boundaries of the edges of the cell [𝑥min, 𝑥max) × [𝑦min, 𝑦max) ×
[𝑧min, 𝑧max) (Sect. 4.6).

Algorithm 3: Compute tree cell sizes
Data: morton The morton code buffer.
Result: bmin, bmax, the bounds of the cells.

1 𝑚1 = morton[𝑖]
2 𝑚2 = morton[endrange[𝑖]]
3 𝜎 = 𝛿karras (𝑚1, 𝑚2)
4 f0 = s(𝜎)
5 f1 = s(𝜎 + 1)
6 mask = maxint << (bitlen − 𝜎)
7 p0 = (morton→ real space) (m[𝑖]& mask)
8 bmin[𝑖] = p0
9 bmax[𝑖] = p0 + f0

10 if left child flag[𝑖] then
11 bmin[rid[𝑖] + 𝑁internal] = p0
12 bmax[lid[𝑖] + 𝑁internal] = p0 + f1

13 if right child flag[𝑖] then
14 tmp = f0 − f1
15 bmin[rid[𝑖] + 𝑁internal] = p0 + tmp
16 bmax[lid[𝑖] + 𝑁internal] = p0 + tmp + f1

Alg. 3 provides the procedure to compute the size of tree cells,
using the vector position s defined by Eq. 7 and the quantities 𝑝0
and 𝑝1 defined by Eqs. 5 – 6. For internal cells that have leaves as
children, the boundary of the edges can be calculated by incrementing
the value of 𝛿(𝑎, 𝑏) by one unity and using the new value in Eqs. 5 –
6. This gives the expected result for a left child, an extra shift being
added for the right child (cf. line 14 of Alg.3).

4.12 Tree traversal

Each cell, leaf or internal of the tree constructed by the procedure
described above consists of an axis-aligned bounding boxes and con-
taining several numerical objects. Searching for the neighbours of an
object 𝑎 therefore requires checking the existence of an interaction
between a cell of the tree 𝑐 and the object 𝑎, using the object-group
interaction criterion 𝛾𝑜/𝑔 (𝑎, 𝑐). Per construction, if the criterion is
true for a child cell, it is also true for its parent. Neighbour finding
requires therefore starting from the root node and going down the

Algorithm 4: Tree traversal
Data:
𝑑𝑒𝑝𝑡ℎ : The maximal tree depth, 𝑁𝑖𝑛𝑜𝑑𝑒 : The number of
internal nodes in the tree, {𝑙𝑐ℎ𝑖𝑙𝑑𝑖𝑑, 𝑗 } 𝑗∈[0,𝑁𝑖𝑛𝑜𝑑𝑒) ,
{𝑟𝑐ℎ𝑖𝑙𝑑𝑖𝑑, 𝑗 } 𝑗∈[0,𝑁𝑖𝑛𝑜𝑑𝑒) , {𝑙𝑐ℎ𝑖𝑙𝑑 𝑓 𝑙𝑎𝑔, 𝑗 } 𝑗∈[0,𝑁𝑖𝑛𝑜𝑑𝑒) ,
{𝑟𝑐ℎ𝑖𝑙𝑑 𝑓 𝑙𝑎𝑔, 𝑗 } 𝑗∈[0,𝑁𝑖𝑛𝑜𝑑𝑒)

// Setup index stack

1 𝑖 ← 𝑑𝑒𝑝𝑡ℎ − 1;
2 𝑠← {𝑒𝑟𝑟}𝑖∈[0,𝑑𝑒𝑝𝑡ℎ) ;
// Enqueue the root node

3 𝑠𝑖 ← 0;
4 do

// Pop top of the stack

5 𝑗 = 𝑠𝑖 ;
6 𝑠𝑖 = 𝑒𝑟𝑟;
7 𝑖 ← 𝑖 + 1;

// Check if interaction

8 𝛼← 𝛾𝑜/𝑔 (. . . , 𝑗);
9 if 𝛼 then

// If the current node is a leaf

10 if 𝑗 ≥ 𝑁𝑖𝑛𝑜𝑑𝑒 then
// Iterate on objects in leaf

11 leaf object iteration(𝑗);
12 else

// Push node childs on the stack

13 𝑙𝑖𝑑 ← 𝑙𝑐ℎ𝑖𝑙𝑑𝑖𝑑, 𝑗 + (𝑁𝑖𝑛𝑜𝑑𝑒) ∗ 𝑙𝑐ℎ𝑖𝑙𝑑 𝑓 𝑙𝑎𝑔, 𝑗 ;
14 𝑟𝑖𝑑 ← 𝑟𝑐ℎ𝑖𝑙𝑑𝑖𝑑, 𝑗 + (𝑁𝑖𝑛𝑜𝑑𝑒) ∗ 𝑟𝑐ℎ𝑖𝑙𝑑 𝑓 𝑙𝑎𝑔, 𝑗 ;
15 𝑖 ← 𝑖 − 1;
16 𝑠𝑖 = 𝑟𝑖𝑑;
17 𝑖 ← 𝑖 − 1;
18 𝑠𝑖 = 𝑙𝑖𝑑;
19 else

// Gravity

20 leaf exclude case(𝑗);
21 while 𝑖 < 𝑑𝑒𝑝𝑡ℎ;

tree, checking at each step whether the interaction criterion is still
verified or not. The result is a set of retained tree leaves, that are
likely to contain neighbours. The set of neighbours of a given object
is then obtained by verifying the object-object interaction criterion
on each object in each of the targeted leaves. The algorithmic proce-
dure for these steps is detailed in Alg. 4. It is based on the property
that the depth of the tree is shorter than the length of the Morton
code representation. This allows a stack of known size to be used
to traverse the tree, which can be added at compile time and run
on the GPU since there is no dynamic memory allocation. The first
step in the algorithm is to push the root node onto the stack. In each
subsequent step, we pop the node on top of the stack, and we check
whether or not it interacts with the object. If it does, and if it is an
internal node, we push its children onto the top of the stack and move
on to the next step. Otherwise, if it is a leaf, we iterate through the
objects contained in the leaf (Alg. 2), and check the object-object
interaction criterion for each object in the given leaf. In the source
code of Shamrock, we abstract Alg. 4 under the rtree_for. It can
be called from within a kernel on the device and can be associated
with any interaction criteria. It will then provide an abstract loop over
the objects found using the criteria.

MNRAS 000, 1–30 (2024)

Shamrock SPH solver 13

4.13 Direct neighbour cache

Using neighbour search directly is technically feasible, but conduct-
ing it repeatedly would result in substantial costs due to its intricate
logic. Moreover, executing computations within the core of a de-
vice kernel with extensive branching would negatively impact per-
formance. To circumvent these issues, we instead build a neighbour
cache when traversing the tree, and then reuse this cache for subse-
quent computations on the particles. The benefits are twofold: firstly,
it increases performance for the reasons outlined above, and secondly,
it decouples neighbour finding from calculations carried out on the
particles, enabling optimisation efforts to be better targeted. Con-
versely, using such an approach means that we store an integer index
for each pair of neighbours, which in SPH is roughly 60 times the
number of particles. The memory footprint therefore increases sig-
nificantly. Taking everything into account, we opt for the neighbour
caching strategy due to its better performance and extensibility.

Algorithm 5: Neighbour caching
Data: 𝑁 : The number of objects to build cache for, 𝛾𝑜/𝑔 :

the object-group interaction criterion, 𝛾𝑜/𝑜 the object
object interaction criterion.

Result: {𝜉𝑖}𝑖∈[0,𝑁+1) The offset map. {Ξ𝑖}𝑖∈[0,𝑁𝑛𝑒𝑖𝑔ℎ) The
neighbour id map.

1 {𝑐𝑖 ← 0}𝑖∈[0,𝑁+1) ;
// First pass to count neighbours

2 for 𝑖 ∈ [0, 𝑁) in parallel do
3 𝑐 ← 0;
4 for 𝑗 ← rtree_for[𝛾𝑜/𝑔 (𝑖, . . .)] do
5 if 𝛾𝑜/𝑜 (𝑖, 𝑗) then
6 𝑐 ← 𝑐 + 1;

7 𝑐𝑖 ← 𝑐;
// 𝑐𝑖 contain the neighbours counts

8 {𝜉𝑖}𝑖∈[0,𝑁+1) ← exclusive scan({𝑐𝑖}𝑖∈[0,𝑁+1));
// 𝜉𝑖 contain the neighbour map offset

9 𝑁𝑛𝑒𝑖𝑔ℎ ← 𝑐𝑁 ;
10 {Ξ𝑖 ← 0}𝑖∈[0,𝑁𝑛𝑒𝑖𝑔ℎ) ;
// Second pass to get neighbours ids

11 for 𝑖 ∈ [0, 𝑁) in parallel do
12 𝑜 𝑓 𝑓 ← 𝜉𝑖 ;
13 for 𝑗 ← rtree_for[𝛾𝑜/𝑔 (𝑖, . . .)] do
14 if 𝛾𝑜/𝑜 (𝑖, 𝑗) then
15 Ξ𝑜 𝑓 𝑓 ← 𝑗 ;
16 𝑜 𝑓 𝑓 ← 𝑜 𝑓 𝑓 + 1;

We start by allocating a buffer to store the neighbour count for
each object. We perform an initial loop over all the objects and do
a tree traversal for each of them to obtain the neighbour counts. We
then perform an exclusive scan, which gives the offset used to write
in the neighbour index map from our neighbour count buffer. The
neighbour count buffer has an extra element that is set to zero at its
end, this allows us to obtain the total number of neighbours in this
slot after the exclusive scan. A final loop writes the indexes of the
neighbours to the neighbour index map. Details of this procedure are
given in Alg. 5. We can use a procedure similar to the one used for
the tree leafs in Alg. 2 to iterate over the neighbours stored in the
neighbour cache, as depicted in Alg. 6.

Algorithm 6: Neighbour cache usage
Data: {𝜉𝑖 ← 0}𝑖∈[0,𝑁+1) the offset map, {Ξ𝑖}𝑖∈[0,𝑁𝑛𝑒𝑖𝑔ℎ)

the neighbour cache

1 for 𝑗 ∈ [𝜉𝑖 , 𝜉𝑖+1) do
2 𝑘 ← Ξ 𝑗 // index of neighbour

3 F (𝑘)

4.14 Two-stages neighbour cache

The procedure described in Sect. 4.13 consists of a direct neighbour
cache, in the sense that for each object we search directly for its neigh-
bours. A more sophisticated approach, likely to improve performance
in most cases, involves splitting the direct case into two stages. In
the first step, we search for the neighbours of each tree leaf using the
group-group interaction criterion and the group-object criterion. In
the second step, we first determine in which leaf the object is, then
use the leaf neighbour cache to find the neighbour of the object. The
first step only searches for neighbours within the leaves of the tree,
while the second step produces the same result as in the direct case.
In a two-stages neighbour search, tree traversal is performed once
per tree leaf, instead of once per object. When combined with tree
reduction, this approach can decrease the number of tree traversals
performed by a factor of ten. On the flip side, adopting a two-stage
neighbour caching approach increases the number of kernels to be
executed on the device and the allocation pressure (temporarily, as
the first step is discarded at the end, the memory footprint is un-
changed compared to the direct case, but temporary allocation can
introduce additional latency). Overall, we observe that two-stages
neighbour caching generally improves computational efficiency, and
when combined with tree reduction, this strategy ultimately yields
the best performance.

5 SMOOTHED PARTICLE HYDRODYNAMICS IN
SHAMROCK

5.1 Equations of motion

Smoothed Particle Hydrodynamics (SPH), initially introduced by
Lucy (1977); Gingold & Monaghan (1977), is a Lagrangian approach
widely employed in astrophysics. It is used for its capacity to handle
complex geometries, adapt resolution to follow mass, address free
boundary conditions, and offer an alternative approach to grid-based
methods for validating nonlinear solutions. In a Lagrangian form, the
equations of motion for compressible inviscid hydrodynamics are

d𝜌
d𝑡

= −𝜌∇ · v, (8)

dv
d𝑡

= −∇𝑃
𝜌
+ f, (9)

d𝑢
d𝑡

= −𝑃
𝜌
∇ · v, (10)

where 𝜌, v, 𝑃 and 𝑢 denote the density, the velocity, the pressure and
the specific internal energy of the fluid respectively. The system of
equations is closed through the equation of state of the fluid. In SPH,
the equations Eqs. 8 – 10 are smoothed and discretised across moving
interpolation points, also called SPH particles. Density estimates for

MNRAS 000, 1–30 (2024)

14 T. David--Cléris et al.

each particle 𝑎 are obtained following

𝜌𝑎 =
∑︁
𝑏

𝑚𝑏𝑊𝑎𝑏 (ℎ𝑎), (11)

𝑊𝑎𝑏 (ℎ𝑎) =
𝐶norm

ℎ3
𝑎

𝑓

(
|r𝑎 − r𝑏 |

ℎ𝑎

)
, (12)

r𝑎 , 𝑚𝑎 , and ℎ𝑎 represent the position, fixed mass, and smoothing
length of particle 𝑎, respectively. When ℎ𝑎 is itself a function of the
density, Eqs. 11 – 12 should be solved consistently (see Sect. 5.4).
In practice, particles are semi-regularly arranged. The interpolation
kernel 𝑊 is a bell-shaped function that converges weakly towards a
delta Dirac distribution when the smoothing length ℎ goes to zero.
𝐶norm is a normalisation constant for the kernel, calculated for a three
dimensional domain of simulation. In Shamrock, typical functions
𝑓 with finite compact supports, such as Schoenberg (1946) B-splines
like 𝑀4, 𝑀5, 𝑀6 , or Wendland functions like 𝐶2, 𝐶4, 𝐶6 (see e.g.,
Wendland 1995), are implemented. Although Gaussian kernels are
excellent for SPH they would be too costly for large simulations,
motivating the choice of compactly supported function to ensure
computational efficiency (see Morris (1996); Price (2012); Dehnen
& Aly (2012) for details). We define 𝑙𝑎 , the interaction radius of
SPH particle 𝑎, as 𝑙𝑎 = 𝑅kernℎ𝑎 , where 𝑅kern is the radius of 𝑓 ,
the kernel generator function. Eq. 11 is a smoothed integrated form
of the continuity equation Eq. 8. Eq. 11 provides an estimate of the
local expansion rate of an elementary volume of the fluid d𝑉

d
d𝑡

d𝑉 = (∇ · v) d𝑉, (13)

without defining volumes explicitly. Indeed,

d
d𝑡

(
𝑚𝑎

𝜌𝑎

)
= − 1

𝜌𝑎

d𝜌𝑎
d𝑡

(
𝑚𝑎

𝜌𝑎

)
. (14)

As introduced by Price (2012), evolution of internal energy Eq. 10
is subsequently calculated according to

d𝑢𝑎
d𝑡

=
𝑃𝑎

𝜌2
𝑎

d𝜌𝑎
d𝑡

=
𝑃𝑎

𝜌2
𝑎Ω𝑎

∑︁
𝑏

𝑚𝑏v𝑎𝑏 · ∇𝑊𝑎𝑏 (ℎ𝑎), (15)

Ω𝑎 = 1 − 𝜕ℎ𝑎

𝜕𝜌𝑎

∑︁
𝑏

𝑚𝑏
𝜕𝑊𝑎𝑏 (ℎ𝑎)

𝜕ℎ𝑎
, (16)

where v𝑎𝑏 ≡ v𝑎 − v𝑏 , and the pressure 𝑃𝑎 is related to the density
𝜌𝑎 and other variables through the equation of state. The term Ω𝑎

arises from the fact that ℎ𝑎 is chosen in practice to be a function
of the density and as such, depends on the positions of the particles
(Monaghan 2002; Springel & Hernquist 2002).

Equations of motion for the SPH particles can be derived from a
Lagrangian (e.g. Monaghan & Price 2001; Price 2012)

𝐿 =
∑︁
𝑏

𝑚𝑏

[
1
2

v2
𝑏
− 𝑢𝑏 (𝜌𝑏 , 𝑠𝑏)

]
, (17)

giving a parallel to its continuous counterpart (Seliger & Whitham
1968)

L =

∬
𝜌0

[
1
2

(
𝜕x𝑖
𝜕𝑡

)2
− 𝑢

]
d𝜶d𝑡. (18)

From a variational principle, one obtains

dx𝑎
d𝑡

= v𝑎 , (19)

dv𝑎
d𝑡

=
∑︁
𝑏

𝑚𝑏

(
𝑃𝑎

𝜌2
𝑎Ω𝑎

∇𝑎𝑊𝑎𝑏 (ℎ𝑎) +
𝑃𝑏

𝜌2
𝑏
Ω𝑏

∇𝑎𝑊𝑎𝑏 (ℎ𝑏)
)
. (20)

The variational method guarantees that Eqs. 19 – 20 preserve total
linear momentum, angular momentum and energy conservation up
to machine precision.

Hydrodynamic shocks are not captured by Eq. 20. To address this
issue, a Von Neumann shock viscosity with linear and quadratic
terms (Von Neumann & Richtmyer 1950; Landshoff 1955; Margolin
& Lloyd-Ronning 2022) is employed for velocities to circumvent this
limitation, in the SPH solver we use the shock capturing terms from
Price & Federrath (2010); Lodato & Price (2010) modified from the
original formation of Monaghan (1997a). The extended equation of
motion becomes

dv𝑎
d𝑡

=
∑︁
𝑏

𝑚𝑏

(
𝑃𝑎 + 𝑞𝑎𝑎𝑏
𝜌2
𝑎Ω𝑎

∇𝑎𝑊𝑎𝑏 (ℎ𝑎) +
𝑃𝑏 + 𝑞𝑏𝑎𝑏
𝜌2
𝑏
Ω𝑏

∇𝑎𝑊𝑎𝑏 (ℎ𝑏)
)
,

(21)

where

𝑞𝑎
𝑎𝑏

=

{
− 1

2 𝜌𝑎𝑣sig,𝑎𝒗𝑎𝑏 · �̂�𝑎𝑏 , 𝒗𝑎𝑏 · �̂�𝑎𝑏 < 0
0 otherwise,

, (22)

𝑣sig,𝑎 = 𝛼AV
𝑎 𝑐𝑠,𝑎 + 𝛽 |v𝑎𝑏 · �̂�𝑎𝑏 | , 𝛼AV

𝑎 ∈ [0, 1] . (23)

To properly capture energy discontinuities, a shock conductivity (also
known as artificial conductivity) is employed for the internal energy
(e.g. Noh 1987; Margolin & Lloyd-Ronning 2022). Eq. 15 extends
to (e.g. Chow & Monaghan 1997; Price 2012, 2008)

d𝑢𝑎
d𝑡

=
𝑃𝑎 + 𝑞𝑎𝑎𝑏
𝜌2
𝑎Ω𝑎

∑︁
𝑏

𝑚𝑏v𝑎𝑏 · ∇𝑎𝑊𝑎𝑏 (ℎ𝑎) + Λcond, (24)

where

Λcond =
∑︁
𝑏

𝑚𝑏𝛽𝑢𝑣
𝑢
sig (𝑢𝑎 − 𝑢𝑏)

1
2

[
𝐹𝑎𝑏 (ℎ𝑎)
Ω𝑎𝜌𝑎

+ 𝐹𝑎𝑏 (ℎ𝑏)
Ω𝑏𝜌𝑏

]
, (25)

𝑣𝑢sig =

√︄
|𝑃𝑎 − 𝑃𝑏 |
(𝜌𝑎 + 𝜌𝑏)/2

, (26)

using 𝐹𝑎𝑏 (ℎ𝑎) = r̂𝑎𝑏 · ∇𝑎𝑊𝑎𝑏 (ℎ𝑎). We use the symbol 𝛽𝑢 to rep-
resent the shock conductivity parameter instead of the conventional
𝛼𝑢. This change clarifies that 𝛼𝑢 is related to the quadratic part
of the artificial viscosity 𝛽 |v𝑎𝑏 · �̂�𝑎𝑏 |, rather than the linear part
𝛼AV
𝑎 𝑐s,𝑎 (Von Neumann & Richtmyer 1950; Noh 1987; Margolin

& Lloyd-Ronning 2022). Writing Eq. 21&24 with a shock viscosity
expressed as a modified pressure ensures consistent application of
the corresponding terms in both the velocity and energy equations.

5.2 Shock detection

To provide shock detection to enable shock viscosity only in regions
of interest we use the method from Cullen & Dehnen (2010) that was
implement in Phantom (Price et al. 2018), which is an improved
version of the Morris & Monaghan (1997) switch (see Price 2008,
2012). The value of the shock viscosity parameter 𝛼𝑎 is evolved
using

d𝛼𝑎
d𝑡

= −
(
𝛼𝑎 − 𝛼loc,𝑎

)
𝜏𝑎

. (27)

The targeted value of the shock viscosity parameter 𝛼loc,𝑎 is defined
using

𝛼loc,𝑎 ≡ min

(
10𝐴𝑎

ℎ2
𝑎

𝑐2
s,𝑎

, 𝛼max

)
, (28)

MNRAS 000, 1–30 (2024)

Shamrock SPH solver 15

where

𝐴𝑎 ≡ 𝜉𝑎 max
[
− d

d𝑡
(∇ · 𝒗𝑎) , 0

]
, (29)

is the shock indicator and 𝜉𝑎 is the corrective factor (Balsara 1995)

𝜉 ≡ |∇ · 𝒗 |2

|∇ · 𝒗 |2 + |∇ × 𝒗 |2
. (30)

The rising time 𝜏𝑎 ≡ ℎ𝑎/(𝑐𝑠,𝑎𝜎𝑑) is parameterised by the decay
parameter 𝜎𝑑 = 0.1, a typical value for practical cases. In practice,
𝛼𝑎 (𝑡) is set directly to 𝛼loc,𝑎 if 𝛼loc,𝑎 > 𝛼𝑎 (𝑡). Similarly to the
approach used in Phantom (Cullen & Dehnen 2010), we use SPH
derivatives that are exact to the linear order are used to compute

d
d𝑡
(∇ · 𝒗𝑎) =

∑︁
𝑖

𝜕𝑎𝑖𝑎

𝜕𝑥𝑖𝑎
−

∑︁
𝑖, 𝑗

𝜕𝑣𝑖𝑎

𝜕𝑥
𝑗
𝑎

𝜕𝑣
𝑗
𝑎

𝜕𝑥𝑖𝑎
, (31)

where for a given field 𝜙, this accurate SPH derivative is

𝑅
𝑖 𝑗
𝑎

𝜕𝜙𝑘𝑎

𝜕𝑥
𝑗
𝑎

=
∑︁
𝑏

𝑚𝑏

(
𝜙𝑘
𝑏
− 𝜙𝑘𝑎

) 𝜕𝑊𝑎𝑏 (ℎ𝑎)
𝜕𝑥𝑖

, (32)

where,

𝑅
𝑖 𝑗
𝑎 =

∑︁
𝑏

𝑚𝑏

(
𝑥𝑖
𝑏
− 𝑥𝑖𝑎

) 𝜕𝑊𝑎𝑏 (ℎ𝑎)
𝜕𝑥 𝑗

≈ 𝛿𝑖 𝑗 . (33)

Inverting 𝑅
𝑖 𝑗
𝑎 and applying it to Eq. 32 provides the desired derivative.

5.3 SPH interaction criterion

Eq. 21 shows that two SPH particles interact when their relative dis-
tance is inferior to the maximum of their interaction radius. Formally,
the object-object interaction criterion between two particles 𝑎 and 𝑏

is

𝛾𝑜/𝑜 (𝑎, 𝑏) ≡ {|r𝑎 − r𝑏 | < max(𝑙𝑎 , 𝑙𝑏)} . (34)

Consider now a group of SPH particles, and let us embed them in an
axis-aligned bounding box (AABB). Consider another SPH particle.
A necessary condition for the latter particle to interact with the AABB
is: it resides within the volume formed by extending the AABB in all
directions by the maximum of all interaction radii of particles inside
the AABB, or, a ball centered on the particle, with a radius equal to
its interaction radius, intersects the AABB. Formally, the interaction
criterion between the particle and the AABB of particles is therefore

𝛾1
𝑜/𝑔 (𝑎, {𝑏}𝑏∈𝐴𝐴𝐵𝐵) ≡

(
𝑟𝑎 ∈ 𝐴𝐴𝐵𝐵 ⊕ 𝑙𝐴𝐴𝐵𝐵,𝑏

)
∨

(
𝐵(r𝑎 , 𝑙𝑎) ∩ 𝐴𝐴𝐵𝐵 ≠ ∅

)
, (35)

where 𝐵(r𝑎 , 𝑙𝑎) is a ball centred on r𝑎 and of diameter 2𝑙𝑎 , 𝑙𝐴𝐴𝐵𝐵,𝑏

is the maximum interaction radius of the particles in the AABB,
max𝑏∈𝐴𝐴𝐵𝐵 (𝑙𝑏), 𝐴𝐴𝐵𝐵 ⊕ 𝑙 is the operation that extends the AABB
in every direction by a distance 𝑙 and ∨ is the boolean or operator.
Consider now the ball centred on r𝑎 with a diameter of 2𝑙𝑎 . We
denote 𝐴𝐴𝐵𝐵(r𝑎 , 𝑙𝑎) the square AABB with a side length of 2𝑙𝑎 ,
centred at r𝑎 , ensuring that it encompasses the ball. Replacing the
original ball by this AABB in Eq. 35 yields the following group-
object criterion

𝛾2
𝑜/𝑔 (𝑎, {𝑏}𝑏∈𝐴𝐴𝐵𝐵) ≡

(
𝑟𝑎 ∈ 𝐴𝐴𝐵𝐵 ⊕ 𝑙𝐴𝐴𝐵𝐵,𝑏

)
∨

(
𝐴𝐴𝐵𝐵(r𝑎 , 𝑙𝑎) ∩ 𝐴𝐴𝐵𝐵 ≠ ∅

)
. (36)

Though less stringent than that of Eq. 35, this criterion is easier to
handle in practice. Indeed, one can show that (App. B)

𝐴𝐴𝐵𝐵1 ⊕ ℎ ∩ 𝐴𝐴𝐵𝐵2 ≠ ∅ ⇔ 𝐴𝐴𝐵𝐵1 ∩ 𝐴𝐴𝐵𝐵2 ⊕ ℎ ≠ ∅. (37)

Let AABB1e and AABB2e denote the extended version of AABB1
and AABB2, extended by the distance ℎ in all three directions re-
spectively. Eq. 37 asserts that if AABB1e intersects AABB1, it is
equivalent for AABB1 to intersect AABB2e. Applied on Eq. 36,
Eq. 37 guarantees that the object-group interaction criterion can be
rewritten by moving the contribution of the interaction radius of the
particle 𝑎 to the term corresponding to the AABB in the second
brackets, as follows

𝛾2
𝑜/𝑔 (𝑎, {𝑏}𝑏∈𝐴𝐴𝐵𝐵) ≡

(
𝑟𝑎 ∈ 𝐴𝐴𝐵𝐵 ⊕ 𝑙𝐴𝐴𝐵𝐵,𝑏

)
∨ (38)

∨
(
𝐴𝐴𝐵𝐵(r𝑎 , 0) ∩ 𝐴𝐴𝐵𝐵 ⊕ 𝑙𝑎 ≠ ∅

)
,

≡
(
𝑟𝑎 ∈ 𝐴𝐴𝐵𝐵 ⊕ 𝑙𝐴𝐴𝐵𝐵,𝑏

)
(39)

∨ (𝑟𝑎 ∈ 𝐴𝐴𝐵𝐵 ⊕ 𝑙𝑎)
≡

[
𝑟𝑎 ∈ 𝐴𝐴𝐵𝐵 ⊕ max

(
𝑙𝐴𝐴𝐵𝐵,𝑏 , 𝑙𝑎

)]
. (40)

The three criteria discussed above satisfy the hierarchy

𝛾2
𝑜/𝑔 (𝑎, {𝑏}𝑏∈𝐴𝐴𝐵𝐵) ⇐ 𝛾1

𝑜/𝑔 (𝑎, {𝑏}𝑏∈𝐴𝐴𝐵𝐵)

⇐
∨
𝑏

𝛾𝑜/𝑜 (𝑎, 𝑏). (41)

Finally, one can extend the first form of 𝛾2
𝑜/𝑔 to the following group-

group interaction criterion

𝛾𝑔/𝑔 (𝐴𝐴𝐵𝐵1,𝐴𝐴𝐵𝐵2) ≡
(
[𝐴𝐴𝐵𝐵1 ⊕ 𝑙𝐴𝐴𝐵𝐵1 ,𝑎] ∩ 𝐴𝐴𝐵𝐵2 ≠ ∅

)
∨

(
𝐴𝐴𝐵𝐵1 ∩ [𝐴𝐴𝐵𝐵2 ⊕ 𝑙𝐴𝐴𝐵𝐵2 ,𝑏] ≠ ∅

)
. (42)

Using Eq. 37 similarly as for Eq.36 we obtain the form of the group-
group interaction criterion used in Shamrock,

𝛾𝑔/𝑔 (𝐴𝐴𝐵𝐵1, 𝐴𝐴𝐵𝐵2) ≡(
𝐴𝐴𝐵𝐵1 ∩ [𝐴𝐴𝐵𝐵2 ⊕ max(𝑙𝐴𝐴𝐵𝐵1 ,𝑎 , 𝑙𝐴𝐴𝐵𝐵2 ,𝑎)] ≠ ∅

)
.

(43)

In summary, the interaction criteria used for SPH in Shamrock are:

• Object-object criterion :

𝛾𝑜/𝑜 (𝑎, 𝑏) = |r𝑎 − r𝑏 | < 𝑅kern max(ℎ𝑎 , ℎ𝑏)

• Object-group criterion :

𝛾2
𝑜/𝑔 (𝑎, {𝑏}𝑏∈𝐴𝐴𝐵𝐵) =

[
𝑟𝑎 ∈ 𝐴𝐴𝐵𝐵 ⊕ 𝑅kern max

(
ℎ𝐴𝐴𝐵𝐵,𝑏 , ℎ𝑎

)]
• Group-group criterion :

𝛾𝑔/𝑔 (𝐴𝐴𝐵𝐵1, 𝐴𝐴𝐵𝐵2) =
(
𝐴𝐴𝐵𝐵1 ∩ [𝐴𝐴𝐵𝐵2

⊕ 𝑅kern max(ℎ𝐴𝐴𝐵𝐵1 ,𝑎 , ℎ𝐴𝐴𝐵𝐵2 ,𝑎)] ≠ ∅
)

5.4 Adaptive smoothing length

In astrophysics, a typical choice consists in choosing ℎ𝑎 in a way that
the resolution follows the density

𝜌(ℎ) = 𝑚

(
ℎfact
ℎ

)3
, (44)

where ℎfact is a tabulated dimensionless constant that depends on
the kernel (e.g. ℎfact = 1.2 for the 𝑀4 cubic kernel). This specific

MNRAS 000, 1–30 (2024)

16 T. David--Cléris et al.

form also implies that the averaged number of neighbours within
the compact support of a given SPH particle is roughly constant
throughout the simulation. Eq. 44 must itself be consistent with
the definition of density Eq. 12, since ℎ depends on 𝜌 and vice
versa. Achieving this requires for density and smoothing length to be
calculated simultaneously, by minimising the function

𝛿𝜌 = 𝜌𝑎 − 𝜌(ℎ𝑎). (45)

This approach allows an accurate use of 𝜌(ℎ𝑎) in the algorithms
rather than calculating the SPH sum. In practice, the iterative pro-
cedure is conducted with a Newton-Raphson algorithm. The steps
outlined in Alg. 7 describe the iterative procedure used to update
the smoothing length. A technicality related to ghost zones arises

Algorithm 7: Smoothing length update
Data: ℎ𝑛𝑎 The smoothing lengths at timestep 𝑛, 𝜒 The ghost

zone size tolerance.
Result: ℎ𝑛+1𝑎 The smoothing lengths at timestep 𝑛 + 1.

1 {𝜖𝑎 ← −1}𝑎;
// Use a copy of ℎ𝑛𝑎 to do iterations

2 {ℎ𝑎 ← ℎ𝑛𝑎}𝑎;
// Outer loop for ghost exchange

3 while min𝑎 (𝜖𝑎) = −1 do
4 . . . exchange ghosts positions with tolerance 𝜒 . . . ;

// Inner loop for Newton-Rahpson

5 while max𝑎 (𝜖𝑎) > 𝜖𝑐 do
6 for 𝑎 in parallel do

// Compute the SPH sum

7 𝜌𝑎 ←
∑

𝑏 𝑚𝑏𝑊𝑎𝑏 (ℎ𝑎);
// Newton-Rahpson

8 𝛿𝜌 ← 𝜌𝑎 − 𝜌(ℎ𝑎);
9 𝑑𝛿𝜌 ← ∑

𝑏 𝑚𝑏
𝜕𝑊𝑎𝑏 (ℎ𝑎)

𝜕ℎ𝑎
+ 3𝜌𝑎

ℎ𝑎
;

10 ℎ𝑛+1𝑎 ← ℎ𝑎 − 𝛿𝜌/𝑑𝛿𝜌;

// Avoid over/under-shooting

11 if ℎ𝑛+1𝑎 > ℎ𝑎𝜆 then
12 ℎ𝑛+1𝑎 ← ℎ𝑎𝜆;
13 else if ℎ𝑛+1𝑎 < ℎ𝑎/𝜆 then
14 ℎ𝑛+1𝑎 ← ℎ𝑎/𝜆;
15 𝜖𝑎 ← |ℎ𝑛+1𝑎 − ℎ𝑎 |/ℎ𝑛𝑎;

// Exceed ghost size

16 if ℎ𝑛+1𝑎 > ℎ𝑛𝑎𝜒 then
17 ℎ𝑛+1𝑎 ← ℎ𝑛𝑎𝜒;
18 𝜖𝑎 ← −1;

during this procedure. The size 𝛾12 of the ghost zone separating
two adjacent patches, 𝑃1 and 𝑃2, is determined by the group-group
interaction criterion between these patches

𝛾12 = max
(
max
{𝑎}

ℎ𝑎 ,max
{𝑏}

ℎ𝑏

)
. (46)

where 𝑎 and 𝑏 stem for indices of particles in 𝑃1 and 𝑃2 respectively.
In Shamrock, the size 𝛾12 is increased by a safety factor 𝜒, termed
as the ghost zone size tolerance. This factor acknowledges that ghost
zone structures should withstand fluctuations in smoothing lengths
throughout the iterative process. With this tolerance, the smoothing
length can fluctuate by a factor of 𝜒 during density iterations without

necessitating Shamrock to regenerate the ghost zones. In practice,
we first exchange the ghost zones using a tolerance 𝜒 = 1.1, then
iterate until all particles converge to the consistent smoothing length
or exceed the ghost zone size tolerance. If the latter occurs, we restart
the process from the beginning with the updated smoothing length.
We find that this almost rarely arises, except during the initial time
step when the smoothing length is converged for the first time. Alg. 7
shows that in Shamrock, we use an additional safety factor, denoted
as 𝜆, to prevent over- and undershooting throughout the iterations.
Without this correction, the iterative procedure may yield unstable
negative smoothing lengths. In practice, we use 𝜆 = 1.2.

5.5 Time stepping

5.5.1 Leapfrog integration

By construction, standard SPH is conservative and achieves second-
order accuracy in space in smooth flows. To ensure consistency,
time integration in Shamrock employs a symplectic second-order
leapfrog integrator, or ‘Kick-drift-kick’ (e.g. Verlet 1967; Hairer et al.
2003):

𝒗𝑛+
1
2 = 𝒗𝑛 + 1

2
Δ𝑡𝒂𝑛, (47)

𝒓𝑛+1 = 𝒓𝑛 + Δ𝑡𝒗𝑛+
1
2 , (48)

𝒗∗ = 𝒗𝑛+
1
2 + 1

2
Δ𝑡𝒂𝑛, (49)

𝒂𝑛+1 = 𝒂
(
𝒓𝑛+1, 𝒗∗

)
, (50)

𝒗𝑛+1 = 𝒗∗ + 1
2
Δ𝑡

[
𝒂𝑛+1 − 𝒂𝑛

]
, (51)

where r𝑛, v𝑛 and a𝑛 denote positions, velocities and acceleration
at the 𝑛−th time step Δ𝑡. In the scheme presented in Price et al.
2018, a combined iteration is used to calculate the acceleration 𝒂𝑛+1

and update the smoothing length at the same time. To minimise the
amount of data communicated, we separate the acceleration and the
smoothing length update. In Shamrock, the smoothing length is
calculated after applying Eq. 49. Only positions are required for the
smoothing length iteration. Once these iterations are complete, we
first calculate Ω𝑎 using Eq. 16, then exchange the ghost zones with
the required fields, including Ω𝑎 subsequently used in derivative
computations. Similar to the approach used in Phantom, we use the
correction applied to the velocity, calculated during the correction
step of the leapfrog, as a reference to check that the resulting solution
is reversible over time. The correction applied at the end of the
leapfrog scheme is as follows

Δv𝑖 =
1
2
Δ𝑡

[
𝒂𝑛+1𝑖 − 𝒂𝑛𝑖

]
. (52)

We use the result of Eq. 52 to verify that the maximum correction
does not exceed a fraction 𝜖v of the mean square correction

max
𝑖

©«|Δv𝑖 |/
√√

1
𝑁

∑︁
𝑗

|Δv 𝑗 |2 |
ª®¬ < 𝜀v. (53)

In practice, we set the value 𝜀v = 10−2. If any particles fail to meet
this criterion, we recalculate the acceleration and apply the correction
step again with 𝒗∗ ← 𝒗𝑛+1 instead.

5.5.2 Choice of the timestep

The value of the explicit time step is governed by the Courant-
Friedrich-Levy stability condition (Courant et al. 1928). Following

MNRAS 000, 1–30 (2024)

Shamrock SPH solver 17

Position update Legend :

Derivative update

Update patch load

Scheduler step

Sync particle accretion

apply position boundary

Compute ghost zone graph

Build BVHs

Neighbor caches Smoothing length update

Compute CFL

GPU kernel

MPI communication

MPI comm. + GPU kernel

Smoothing length update

Start End

Next
timestep

No

Yes

Yes

No

Figure 12. Illustration of an SPH time step through an organisational diagram representing one time step of the SPH scheme, the process being divided into three
main sub-steps. Firstly, position updates (scheduling step for patch decomposition, leapfrog prediction, and application of position boundaries if necessary).
Secondly, smoothing length updates (generation of ghost zone graph, construction of BVHs, creation of neighbour caches, smoothing length adjustment,
computation of Ω). Thirdly, derivative updates (field exchange, viscosity and derivative updates, application of leapfrog corrector). The step concludes with
updating the CFL condition. The corresponding equations showed on this flowchart corresponds for the position and derivative update to the equations showed
Sect. 5.5.1 and 5.5.4. For the smoothing length the corresponding equations are detailed Sect. 5.4.

Price et al. (2018) from Lattanzio et al. (1986); Monaghan (1997b),

Δ𝑡 ≡ min(𝐶cour
ℎ𝑎

𝑣dt
sig,𝑎

, 𝐶force

√︄
ℎ𝑎

|𝒂𝑎 |
). (54)

The first term allows to correctly capture the propagation of the
hydrodynamic characteristic waves in the fluid at a given resolution.
Similarly, the second term ensures correct treatment of the action
of external forces on the fluid. The safety coefficients are set to the
following values 𝐶cour = 0.3 and 𝐶force = 0.25.

5.5.3 CFL multiplier

To minimize the cost associated with executing the correction cycles
of the leapfrog scheme, we reduce the time step for a few itera-
tions when Eq. 53 is not satisfied, similar to the approach taken in

Phantom. To do this in Shamrock, we introduce a so-called CFL
multiplier 𝜆CFL, which consists of an additional variable factor ap-
plied to the CFL condition. Therefore, the effective 𝐶cour and 𝐶force
used in Shamrock SPH solver are

𝐶cour = 𝜆CFL�̃�cour, 𝐶force = 𝜆CFL�̃�force, (55)

where �̃�cour and �̃�force are the safety coefficients chosen by default
by the user. If Eq. 53 is not satisfied, we divide 𝜆CFL by a factor of
2. Otherwise, at each time step,

𝜆𝑛+1CFL =
1 + 𝜆stiff𝜆

𝑛
CFL

1 + 𝜆stiff
, (56)

where 𝜆stiff is a coefficient that parameters the stiffness of the evolu-
tion of the CFL multiplier. This numerical strategy allows to handle
shocks in the simulation, automatically cycling leapfrog iterations
over the CFL condition, thereby reducing the time step to enhance

MNRAS 000, 1–30 (2024)

18 T. David--Cléris et al.

energy conservation. This procedure is particularly effective during
the first time steps of the Sedov-Taylor blast problem.

5.5.4 Shock detection

The shock viscosity parameter 𝛼 is evolved according to Eq.27.
After the leafprog prediction step, an implicit time step is used for
this integration

𝛼𝑛+1
loc,𝑎 =𝛼loc,𝑎 (𝒗∗,∇𝒗∗,∇𝒂𝑛), (57)

𝛼𝑛+1
𝑎 =max

(
𝛼𝑛
𝑎 + 𝛼𝑛+1

loc,𝑎Δ𝑡/𝜏𝑎
1 + Δ𝑡/𝜏𝑎

, 𝛼𝑛+1
loc,𝑎

)
. (58)

5.5.5 Summary

We have implemented in Shamrock an SPH hydrodynamical solver
with self-consistent smoothing length that handles shock though the
combined used of shock viscosity and conductivity with state-of-the-
art shock detector. Fig. 12 shows a comprehensive overview of one
SPH time step in Shamrock.

6 PHYSICAL TESTS

6.1 Generalities

Firstly, we validate the SPH solver by performing convergence tests
against classical problems having analytical solutions, such as the
Sod tube and the Sedov-Taylor blast test. The hydrodynamic tests
presented in this Section are performed using the 𝑀6 kernel with
ℎ 𝑓 𝑎𝑐𝑡 = 1.0, with an average number of neighbours of 113 neigh-
bours for each SPH particle (almost no difference is expected in the
results when using other spline kernels, e.g. Price et al. 2018). In
all tests, momentum is conserved to machine precision. The choice
of the CFL condition result in energy deviations that do not exceed
10−6 relative error with respect to the initial value.

Secondly, we examine the residuals obtained from comparing the
results generated by Shamrock and Phantom. Since both codes use
the same SPH algorithm, such an analysis is required for conducting
further performance comparisons. L2 errors are estimated using the
norm

L2 (𝐴sim, 𝐴ref) =
√︄

1
𝑁part

∑︁
𝑖

|𝐴𝑖,sim − 𝐴𝑖,ref |2, (59)

where 𝐴𝑖,ref represents the reference quantities, while 𝐴𝑖,sim denotes
the quantities computed in the simulation.

6.2 Advection

We first perform an advection test in a periodic box of length unity to
verify the correct treatment of the periodic boundaries by Shamrock.
Three lattices of (16 × 12 × 12), (64 × 24 × 24) and (16 × 12 × 12)
particles having velocities 𝑣𝑥 = 1.0 are initially juxtaposed, such
that 𝜌 = 1.0 if 0.25 ≤ 𝑥 ≤ 0.75, and 𝜌 = 0.1 elsewhere. We
let the simulation evolve until the step has crossed several times
the boundaries of the box (we choose 𝑡 = 11, although any other
time, even very large, yields the same outcome since SPH is Galilean
invariant). The result obtained at the end of the simulation is identical
to the initial setup to machine precision.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

ρ

t = 11

Figure 13. Advection of a density step across several traversal of a periodic
box, in code units. SPH being Galilean invariant, the results (black dots)
precisely match the initial setup (red crosses) down to machine precision,
thus validating the boundary treatment in Shamrock.

6.3 Sod tube

We perform a Sod-tube test (Sod 1978) by setting up a box with a
discontinuity between a left state and a right state initially positioned
at 𝑥 = 0.5. In the left state 𝑥 < 0.5, the density and the pressure are
set to 𝜌l = 1 and 𝑃l = 1, while in the right state 𝑥 > 0.5, they are
set to 𝜌r = 0.125 and 𝑃r = 0.1 respectively. To initialise the density
profile, we use a periodic box in which we setup a 24 × 24 × 256
hexagonal close packed lattice in 𝑥 ∈ [−0.5, 0.5] and 12×12×128 in
𝑥 ∈ [0.5, 1.5]. The initial velocity is uniformly set to zero throughout
the simulation. The size of the simulation box size is adjusted such
that we ensure periodicity across the 𝑦 and 𝑧 boundaries. We use
𝛾 = 1.4 to align our test with the Sod tube test commonly performed
in grid codes. No particle relaxation step is used in this test, since
the initial distribution of SPH particles closely resembles a relaxed
distribution akin to a crystal lattice. We use periodic boundaries in the
𝑥 direction. Shock viscosity is setup with the default parameters of
Shamrock, namely 𝜎𝑑 = 0.1, 𝛽 = 2, 𝛽𝑢 = 1. The setup presented
above is then evolved until 𝑡 = 0.245. Fig. 14 shows results obtained
for velocity, density, and pressure, displaying additionally the shock-
capturing parameter 𝛼. For 𝑁𝑥 = 128 particles L2 errors are ∼ 10−3

in 𝑣 and ∼ 10−4 in 𝜌 and 𝑃, similarly to what is obtained with
other SPH codes. Similar setups are used to perform convergence
analysis, except for the lattice, for which we use 24 × 24 × 𝑁𝑥 , and
12×12×(𝑁𝑥/2) particles instead respectively. Results obtained when
varying the value of 𝑁𝑥 are reported in Fig. 15. We observe second-
order convergence on the pressure, first-order convergence in density,
and in-between convergence in velocity. The scattering observed in
the velocity field behind the shock corresponds to particle having to
reorganise the crystal lattice, a typical feature of SPH (e.g. Price et al.
2018). Letting the shock evolve further and interact with the periodic
boundary, we verify that we obtain a second symmetric shock, as
expected.

6.4 Sedov-Taylor blast

We perform a Sedov-Taylor blast wave test (Sedov 1959; Taylor
1950a,b) by first setting up a medium of uniform density 𝜌 = 1
with 𝑢 = 0 and 𝛾 = 5/3, in a 3D box of dimensions [−0.6, 0.6]3.

MNRAS 000, 1–30 (2024)

Shamrock SPH solver 19

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

v

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

ρ
0.0 0.2 0.4 0.6 0.8 1.0

x

0.00

0.25

0.50

0.75

1.00

α

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

P

Figure 14. Result obtained for the Sod-tube test by juxtaposing two tubes of 24 × 24 × 512 particles in 𝑥 ∈ [−0.5, 0.5] and 12 × 12 × 256 particles in
𝑥 ∈ [0.5, 1.5] organised in hexagonal compact packing lattices. The density is set to 𝜌 = 1 in 𝑥 ∈ [−0.5, 0.5] and 𝜌 = 0.125 in 𝑥 ∈ [0.5, 1.5]. Initial pressure
is 𝑃 = 1 for 𝑥 ∈ [−0.5, 0.5] and 𝑃 = 0.1 for 𝑥 ∈ [0.5, 1.5], with zero initial velocities. An adiabatic equation of states with 𝛾 = 1.4 is used. Boundaries
are periodic, and only half of the simulation is displayed. The simulation is performed until 𝑡 = 0.245, and numerical results are compared against the analytic
solution. We additionally show the values of the shock viscosity parameter 𝛼.

64 128 256 512 1024 2048
Nx

10−6

10−5

10−4

10−3

L2

L2[ρ](Nx)

L2[vx](Nx)

L2[P](Nx)

order 1

order 2

Figure 15. L2 errors obtained for the Sod shock tube test presented on
Fig.14 as a function of the number 𝑁𝑥 of particles used on the 𝑥 axis for
𝑥 ∈ [−0.5, 0.5]. We observe second-order convergence on the pressure,
first-order convergence in density, and in-between convergence in velocity, as
found in other SPH codes.

The particles are arranged locally on a compact hexagonal lattice.
The smoothing length is initially converged by iterating a white time
step. Internal energy is then injected in the centre of the box. This
energy peak is smoothed by the SPH kernel according to 𝑢𝑎 =

𝑊 (r, 2ℎ0) × 𝐸0, where the total amount of energy injected is fixed
at 𝐸0 = 1 and ℎ0 is the smoothing length of the particles after
relaxation. For this test, the CFL condition is lowered to �̃�cour =

�̃�force = 0.1 to prevent leapfrog corrector sub-cycling caused by
the strong shock. This result in an enhanced energy conservation,
with a maximum relative error of 10−6 observed across all tests.
The simulation is then evolved up to 𝑡 = 0.1. Simulations with
𝑁 = 26, 52, 105, 210 have been performed on a single A100 GPU of
an NVidia DGX workstation. Simulations with 𝑁 = 420 and 𝑁 = 840
were executed on the Adastra supercomputer (see Sect. 7) on 4 and
32 nodes respectively. The highest resolution blast test involves 1.255
Gpart, including ghost particles. The simulation consists in 14979
iterations performed in 14 hours, including setup and dumps, on 32
nodes corresponding to 128 Mi250X or equivalently 256 GCDs (see
Sect. 7.1.1 for details). The total energy consumed for this test is
1.94 GJ, as reported by Slurm. The power consumption per node is
1195 W, which equates to slightly over half of the peak consumption
of a single node (2240 W). Numerical results are compared against
analytical solutions. Fig.16 shows results obtained for the density
for 𝑁3 particles, with 𝑁 = 105, 210, 420, 840. For the latter case,
L2 errors are of order ∼ 10−1, which is similar to what is obtained
with other SPH codes with this particular setup. Figure 17 shows that
order one convergence is achieved for 𝑣, 𝜌 and 𝑃, similarly to what
is obtained with other SPH codes.

6.5 Kelvin-Helmholtz instability

We test the ability of Shamrock to capture instabilities related to
discontinuities on internal energy by performing a Kelvin-Helmholtz
instability test (Price 2008). We adopt a setup close to the one pro-
posed by Schaal et al. (2015), that gives rise to secondary instabilities
fostering additional turbulence mixing. The initial pressure, density

MNRAS 000, 1–30 (2024)

20 T. David--Cléris et al.

0.0 0.2 0.4
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ρ
Npart = 2.5 · 106, Nlin ' 1053

0.0 0.2 0.4
r

ρ

Npart = 2.0 · 107, Nlin ' 2103

0.0 0.2 0.4
r

ρ

Npart = 1.6 · 108, Nlin ' 4203

0.0 0.2 0.4
r

ρ

Npart = 1.3 · 109, Nlin ' 8403

Figure 16. Result of the densities (black dots) obtained for the Sedov-Taylor blast test described in Sect. 6.4 at 𝑡 = 0.1 for 𝑁part particles, with 𝑁part =

2.5 · 106, 2.0 · 107, 1.6 · 108, 1.3 · 109 SPH particles (global time-stepping), corresponding to an inter particle spacing on the HCP lattice of respectively
10−2/4, 10−2/8, 10−2/16, 10−2/32. Results are represented against the analytical solution (solid red line). The legend provides the effective linear resolution
𝑁lin corresponding the cubic root of the number of particle displayed on each graphs which are truncated at 𝑟 = 0.58.

101 102 103

Nlin

10−2

10−1

L2

L2[ρ](Nlin)

L2[vr](Nlin)

L2[P](Nlin)

order 1

Figure 17. Convergence study of the Sedov-Taylor blast test presented in
Fig. 16. Order one convergence is achieved for 𝑣, 𝜌 and 𝑃, similarly to what
is obtained with other SPH codes.

and velocity profiles are initialised according to

𝑃 = 3.5 (60)

𝜌 =

{
1, if |𝑦 | > 𝑦𝑠/4,
(3/2)3, if |𝑦 | ≤ 𝑦𝑠/4,

(61)

𝑣𝑥 =

{
𝜉/2, if |𝑦 | > 𝑦𝑠/4,
−𝜉/2, if |𝑦 | ≤ 𝑦𝑠/4,

(62)

𝑣𝑦 = 𝜀 sin(4𝜋𝑥)
{
exp

(
− (𝑦 − 𝑦𝑠/4)2

2𝜎2

)
+ exp

(
− (𝑦 + 𝑦𝑠/4)

2

2𝜎2

)}
.

(63)

The test is performed in 2.5D, restricting the 𝑧 axis to a thin layer
comprising only 6 SPH particles in the low density region, and
9 particles in the high density region. We opt for a density ratio
of (3/2)3 between the two regions to simplify the particle setup
process and circumvent unnecessary complexities associated with

arranging particles on closed-packed lattices. We use 𝛾 = 1.4. The
slip velocity and the perturbation parameters are 𝜉 = 1, 𝜖 = 10−2,
𝜎 = 0.05/

√
2, similarly to the values used in Schaal et al. (2015).

Simulations are performed on a single A100-40GB GPU. This GPU
can accommodate a maximum of approximately ∼ 40 · 106 particles
for the 𝑀4 kernel and ∼ 20 · 106 particles for the 𝑀6 kernel. Fig. 18
shows results obtained at increasing resolutions for the 𝑀4 kernel (top
panel) and the 𝑀6 kernel (bottom panel). Similarly to the findings of
Tricco (2019), we first observe that the 𝑀4 fails to accurately capture
the instability, even at high resolutions, as vortices appear flattened
and overly diffused. Conversely, we observe that all these features
are effectively captured when employing the 𝑀6 kernel. The further
Sect. 6.6 shows that our results align almost perfectly with those
obtained with Phantom. The growth rate observed for the instability
matches therefore the findings reported in Tricco (2019).

6.6 Conformance with Phantom

We aim to benchmark the performance of Shamrock against a state-
of-the-art, robust, optimised and extensively tested SPH code run-
ning on CPUs. Several SPH codes are in use in the community (e.g.
Bonsai-SPH Bedorf & Portegies Zwart 2020,Gadget Springel et al.
2021, Gasoline Wadsley et al. 2004, Gizmo Hopkins 2014, Seren
Hubber et al. 2011, Swift Schaller et al. 2018). We choose Phantom,
since it is optimised for hydrodynamics, well-used by the astrophys-
ical community and extensively tested and documented (Price et al.
2018). Before conducting comparisons, one has to ensure that the
two solvers are rigorously identical, up to identified insignificant er-
rors. This is the purpose of the next two tests, that are uncommonly
designed to reveal discrepancies by amplifying errors using lower
resolution or less regular kernels than achievable. For this, we gen-
erate the initial conditions with Phantom, then start an identical
simulation from the same dump using a fixed time step.

6.6.1 Residuals: Low res Sedov-Taylor blast wave test

We first measure the residual discrepancies between Shamrock and
Phantom by comparing results obtained on two identical Sedov-

MNRAS 000, 1–30 (2024)

Shamrock SPH solver 21
y

-0.4

-0.2

0

0.2

0.4 M4 64 M4 64 M4 64

t=1.7
M4 64

y

x

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4 M4 64

x

-0.4 -0.2 0 0.2 0.4

M4 64

x

-0.4 -0.2 0 0.2 0.4

M4 64

x

-0.4 -0.2 0 0.2 0.4

1

2

3

d
en

si
ty

M4 64

Figure 18. Density profiles obtained in the low-resolution 3D Kelvin-Helmholtz test described in Sect. 6.5 at 𝑡 = 1.7 with the 𝑀4 kernel (top panel) and the
𝑀6 quintic kernel (bottom panel) respectively in code units. The instability is correctly captured with the 𝑀6 kernel, similarly to the findings of Tricco (2019).
From left to right, the numbers of particles 𝑁l and 𝑁r used along the 𝑥 axis for the low-density and the high-density regions are: 𝑁l = 128 and 𝑁r = 192,
𝑁l = 256 and 𝑁r = 384, 𝑁l = 512 and 𝑁r = 758, 𝑁l = 1024 and 𝑁r = 1536, which corresponds to 215 × 103, 860 × 103, 3.4 × 106 and 13.7 × 106 particles
respectively.

Taylor blast wave tests described in Sect. 6.4, fixing the time step to
𝑑𝑡 = 10−5. This three-dimensional test is highly sensitive to rounding
errors, primarily due to the presence of a low-density, zero-energy
region surrounding the blast wave. In particular, aligning the be-
haviours of the shock viscosity parameter 𝛼AV proves being particu-
larly challenging. Finally, Fig. 19 shows that discrepancies between
Shamrock and Phantom are imperceptible to the naked eye. Quan-
titatively, the L2 errors are

• relative L2 distance 𝑟 : 2.0869658802024003𝑒 − 07,
• relative L2 distance ℎ : 3.952645327403623𝑒 − 05,
• relative L2 distance 𝑣𝑟 : 0.0005418229957181854,
• relative L2 distance 𝑢 : 3.6622341394801246𝑒 − 05.

Following an in-depth examination, the sole identified distinctions
between the two solvers are as follows: in Phantom, the shock
parameter 𝛼AV and the estimate of ∇ · v are stored as single-
precision floating-point numbers, while in Shamrock, they are
double-precision.

6.6.2 Residuals: Low res Kelvin-Helmholtz instability test

We measure the residuals between Shamrock and Phantom by per-
forming the Kelvin-Helmholtz instability test implemented in Phan-
tom at commit number e01f76c3, at low resolution. Simulations
are evolved to 𝑡 = 2, while dumps are produced every Δ𝑡 = 0.1 to
sample the development of the instability. We choose the M4 ker-
nel and a low number of particles to reveal the differences between
the codes. Fig. 20 and Fig. 21 show the compared evolutions of the
density and of the shock parameter respectively. At 𝑡 = 0.2, no differ-
ence is observed in the density field. For shock viscosity, we observe
for Phantom a small noise of relative amplitude ≲ 0.1% along the
line 𝑦 = 0.5, which we attribute to 𝛼, ℎ,∇ · v being stored as single
precision fields in Phantom. These fluctuations are not present in

Shamrock, since these quantities are calculated in double precision.
At 𝑡 = 0.5 we can distinguish at this low resolution a small line
of higher shock viscosity and density in Shamrock, which is not
present in Phantom. We attribute these residuals to the fact that the
Phantom simulation may have increased numerical viscosity due
to single precision errors, while the SPH lattice in the Shamrock
simulation is still reorganising. At 𝑡 = 1, no significant difference is
observed between the two simulations. Finally, at 𝑡 = 2, tiny differ-
ences can be observed at the edges of the instability, for the same
reasons as at 𝑡 = 1.

6.7 Summary

The hydrodynamic SPH solver implemented in Shamrock passes
successfully the standard tests (advection, Sod tube, Sedov-Taylor
blast, Kelvin-Helmoltz instability). The implementation of the SPH
solver in Shamrock is identical to that of Phantom. Results obtained
with the two codes are almost indistinguishable, the residuals being
attributed to the choice of floating-point precision for the quantities
ℎ, 𝛼,∇ · v. This sets the basis for rigorous performance comparison.

7 PERFORMANCE

7.1 Characteristics of the benchmarks

7.1.1 Hardware specificities

The tests performed to estimate performance with Shamrock were
conducted on two systems. Single GPU and CPU tests were per-
formed on an Nvidia A100-SXM4-40GB GPU of an Nvidia DGX
workstation. This workstation is equipped with 4 Nvidia A100 40GB
GPUs paired with an Epyc7742 64-core CPU, and are exploited via

MNRAS 000, 1–30 (2024)

22 T. David--Cléris et al.

0.0 0.1 0.2 0.3 0.4
r

0.5

1.0

1.5

ρ

phantom

shamrock

0.0 0.1 0.2 0.3 0.4
r

0

100

200

u
0.0 0.1 0.2 0.3 0.4

r

0

2

4

v r

0.0 0.1 0.2 0.3 0.4
r

0.00

0.25

0.50

0.75

1.00

α

Figure 19. A comparison is made between the densities 𝜌, internal energies 𝑢, velocities 𝑣𝑟 , and shock detection parameters 𝛼 obtained at 𝑡 = 1 from two
identical low-resolution Sedov-Taylor blast wave tests conducted by Phantom (red dots) and Shamrock (black dots). Initially, Phantom is used to generate the
same setup file for the two simulations. Runs are then conducted using a fixed time-step of 𝑑𝑡 = 10−5. The dots are indistinguishable by eye (e.g. the L2 error
on the velocity field is of order 5 · 10−4): the implementations of the SPH solver are identical in the two codes.

y

0.2

0.4

0.6

0.8

t=0.2Phantom

t=0.5

t=1

t=2

y

x

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Shamrock

x

0.2 0.4 0.6 0.8
x

0.2 0.4 0.6 0.8
x

0.2 0.4 0.6 0.8

0.04

0.06

0.08

co
lu

m
n

de
ns

it
y

Figure 20. Density profiles obtained at 𝑡 = 0.2, 0.5, 1, 2 on a low resolution Kelvin-Helmholtz test by Phantom (top panel) and Shamrock (bottom panel).
Results are almost identical. The test is voluntarily performed with an unsuited M4 kernel at low-resolution to accentuate residual discrepancies between the two
solvers. Those stem from the use of single precision in one and double precision in the other for shock detection variables.

SIDUS (Quemener & Corvellec 2013) by the Centre Blaise Pas-
cal at ENS de Lyon . CPU tests were carried out on the CPU of
the same DGX workstation using AdaptiveCPP OpenMP backend.
For those Shamrock was compiled using -O3 -march=native.
For single GPU tests of Shamrock compilation was performed us-

ing the Intel fork of the llvm/clang-19 compiler, also referenced as
ONEAPI/DPC++ with optimizations -O3 -march=native. We vol-
untarily didn’t used fast math optimisations as they would not be used
in production. We use the CUDA/PTX backend of Intel llvm target-
ting the CUDA architecture sm_s70 corresponding to the compute

MNRAS 000, 1–30 (2024)

Shamrock SPH solver 23

y

0.2

0.4

0.6

0.8

t=0.2Phantom

t=0.5

t=1

t=2
y

x

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Shamrock

x

0.2 0.4 0.6 0.8
x

0.2 0.4 0.6 0.8
x

0.2 0.4 0.6 0.8

-4.5

-4

-3.5

-3

lo
g

<
 α

 >

Figure 21. Same plot as in Fig.20, revealing the amplitude of truncature errors in the shock viscosity parameter. To our understanding, these errors represent the
sole source of discrepancies between the implementations of SPH in Phantom and Shamrock.

capability of A100 GPUs. The Intel LLVM CUDA/PTX backend
generates code using PTX ISA, the assembly language used to repre-
sent CUDA kernels. This result in a program that actually that is first
lowered from C++ to PTX, then compiled using Nvidia ptxas tool,
which enable the code to be profiled using Nvidia’s CUDA tools.
The CUDA version used is 12.0.

Multi-GPU and multi node tests were performed on Adastra Su-
percomputer at CINES in France, using up to 256 compute nodes,
each compute node is a HPE Cray EX235a each equipped with 4
Mi250X GPUs paired with a 64 Cores AMD Epyc Trento CPU. On
this platform we used ROCm/HIP backend of Intel llvm targetting
the AMD GPU architecture gfx90a corresponding to the compute
capability of Mi250X GPUs. The Intel llvm compiler was compiled
using in the same module environment as Shamrock. We used Cray
CPE 23.12 with acceleration on gfx90a and Trento on the host,
in conjunction with the provided PrgEnv-intel. MPI with GPU
aware support support was provided by the cray MPIch 8.1.26 mod-
ule. ROCm support was provided by both amd-mixed 5.7.1 and rocm
5.7.1. Although the Mi250X GPU is a single chip, it is made up of
two GCDs, which appear as separate instances on the compute node,
where one MPI rank is assigned per GCDs.

7.1.2 Setups

We present the performances of the SPH hydrodynamical solver
of Shamrock on the Sedov Taylor blast wave, since it involves
contributions of all the different terms in the hydrodynamical solver,
and it is neither specific to astrophysics nor SPH. We compare the
results with the one obtained with the hydro dynamical solver of
Phantom with an almost identical implementation (see Sect. 6.6),
on a computing units having similar power consumption.
We use the 𝑀4 kernel and set ℎ 𝑓 𝑎𝑐𝑡 = 1.2. To setup the lat-
tice, we first consider a box of size [−0.6, 0.6]3. For a desired
number of particle 𝑁 , the volume per particle is 𝑐𝑉/𝑁 , where
𝑐 is compacity of a close-packing of equal spheres. As such,
the spacing 𝑑𝑟 between particles is 𝑑𝑟 = (3𝑐𝑉/4𝜋𝑁)1/3. We

103 104 105 106 107 108

N

106

107

108

109

1010

p
ar

ti
cl

es
p

er
se

co
n

d

full tree

reduction

T. Karras

int range

morton build

morton sort

Figure 22. Benchmark of the performance of the tree building in Shamrock.
Each curve represents the number of particles processed per second for various
segments of the algorithm. The thick solid black curve shows the total time to
build the tree. The other curves show the performance of the main algorithms
involved in the tree building procedure. Those correspond to benchmarks
of the isolated algorithms, which break the asynchronous nature of SYCL.
As such, the sum of the individual times do not rigorously add up to the
exact time of the entire algorithm. This benchmark used a dataset of input
positions generated from an hexagonal closed packing lattice, with variations
in lattice spacing. Varying the initial distribution of particles will not affect
total performance of the tree, since overall, the building time is dominated by
the bitonic sort. In this test, we used single precision Morton codes.

then adapt the boundaries of the simulation volume to ensure peri-
odicity in all directions for the initial close-packed lattice of particles.

MNRAS 000, 1–30 (2024)

24 T. David--Cléris et al.

103 104 105 106 107 108

N

0.4

0.6

0.8

1.0

1.2

1.4

1.6

re
la

ti
ve

p
er

fo
rm

an
ce

morton = u32

reduction = 2

reduction = 4

reduction = 6

reduction = 8

103 104 105 106 107 108

N

0.4

0.6

0.8

1.0

1.2

1.4

1.6

re
la

ti
ve

p
er

fo
rm

an
ce

morton = u64

reduction = 0

reduction = 2

reduction = 4

reduction = 6

reduction = 8

Figure 23. Relative performance of the complete tree building procedure for two different types of Morton codes (left: u32, right: u64), for different levels of
reduction. The setup for this test is identical to the one presented in Fig. 22.

7.2 Performance of tree building

Fig. 22 shows the performance of the Shamrock tree building algo-
rithm described in Sect. 4.11, by presenting results of tests carried
out over 103 to 108 objects distributed on a regular cubic lattice.
The results are presented in figures showing the number of object
integrated to the tree per second, as a function of the total num-
ber of objects. This metric highlights the efficiency threshold of the
GPU, where the computation time is shorter than the actual GPU
programming overhead. It also highlights any deviation from a linear
computation time as a function of the size of the input.

For a small to moderate number of objects 𝑁 ≲ 𝑁c where 𝑁c ∼
106, the overhead of launching a GPU kernel leaves a significant
inprint compared to the computational charge. A few million objects
per GPU is the typical number of objects above which the algorithm
can be used efficiently. For any 𝑁 ≥ 𝑁c tested, the tree is built at
a typical constant rate of 5 × 10−9 s per object. Equivalently, 200
millions of objects per second are processed for Morton codes and
the associated positions in double-precision.

For 𝑁 ≥ 𝑁c, the algorithm achieves an almost constant perfor-
mance, as long as it could be tested on current hardware. Fluctuations
of up to 30% are observed for specific values of 𝑁 . These peaks are
consistent across several executions, and therefore probably due to
the hardware scheduler on the GPU. Tree construction is dominated
by the bitonic sorting algorithm (see Fig. 22). Since this algorithm
does not depend on the values stored in the buffer, its performance
is not affected by the spatial distribution of objects, and regular or
randomly arranged points deliver the same performance. The perfor-
mance of tree building of Shamrock is therefore independent of the
distribution of objects considered.

Fig. 23 shows that performance is almost unaffected by the type
(single, double, float or integer) used for the positions (∼ 5 − 10%,
spikes being probably due to the hardware scheduler). Performance
is increased by a factor ∼ 30% when the Morton code representation
is reduced to single precision.

7.3 Performance of neighbour cache building

To measure performance of cache build and SPH time stepping, we

first setup the particles as discussed in Sect. 7.2. Additionally, the
smoothing length has been converged, resulting in 60 neighbours for
the M4 kernel. After this setup, we perform a single time step. Fig. 24
reports the time spent during this time step to build the cache and
perform the iteration. We compare the results obtained for the two
strategies presented in Sect. 4.13 –4.14, along with different levels
of reduction. We find that enhancing the reduction level results in
better overall performance, particularly up to reduction level 6. For
higher levels of reduction, performance drops as a consequence of
the too large number of particles per leaf. Optimal configuration
corresponds to ∼ 10 particles per leaf (reduction level of 4), which
is similar to the number of particles per leaf in Phantom (Price
et al. 2018). Additionally, integrating a two-stage neighbour cache
alongside the reduction algorithm can double performance. To sum
up, the combined use of reduction and a two-stage cache enhances
cache building performance by tenfold, while doubling time-stepping
performance.

7.4 Performance of time stepping

7.4.1 One GPU

We evolve setup a Sedov blast using Phantom git pulled at com-
mit number e01f76c3, with compile flags IND_TIMESTEPS=no
MAXP=50000000 and evolve it with Phantom for a five timesteps
and lower both CFL to 10−3 to avoid leapfrog corrector sub-cycling
in both codes and produce a restart file. We then start both Shamrock
and Phantom on the same restart for 5 iterations, to avoid result be-
ing affected by cache warm up. IO has carefully been subtracted from
the Phantom measured time. The performance of Shamrock is first
tested on a single A100-SXM4-40GB GPU, of total power 275 W.
Fig. 25 shows the number of particles per second iterated as a function
as the total number of particles 𝑁part in the simulation. As expected,
performance increase as the computational pressure on the GPU in-
creases, up to the point where the solver becomes memory-bound
(∼ 106 particles). Beyond this threshold, a typical speed of 12 × 106

particles per second is achieved. For a comparison, we perform a
similar test with Phantom on an AMD Epyc7742 CPU. On this ar-
chitecture, Phantom fully exploit its OpenMP parallelisation across

MNRAS 000, 1–30 (2024)

Shamrock SPH solver 25

104 105 106 107

N

106

107

108

p
ar

ti
cl

es
p

er
se

co
n

d

cache performance (1 stage cache)

reduction 0

reduction 2

reduction 4

reduction 6

reduction 8

104 105 106 107

N

106

107

108

p
ar

ti
cl

es
p

er
se

co
n

d

cache performance (2 stage cache)

reduction 0

reduction 2

reduction 4

reduction 6

reduction 8

104 105 106 107

N

106

107

p
ar

ti
cl

es
p

er
se

co
n

d

timestep performance (1 stage cache)

reduction 0

reduction 2

reduction 4

reduction 6

reduction 8

104 105 106 107

N

106

107

p
ar

ti
cl

es
p

er
se

co
n

d

timestep performance (2 stage cache)

reduction 0

reduction 2

reduction 4

reduction 6

reduction 8

Figure 24. Performances of cache building and time stepping measured on one time step of the Sedov-Taylor blast wave test presented in Fig. 16. Increasing
the level of reduction yields improved performance overall up to reduction level 6. Additionally, using two-stages neighbour caching improves performance up
to a factor of two when used in conjunction with the reduction algorithm. In total, employing both reduction and a two-stage cache enhances cache building
performance by a factor of ten, while doubling time-stepping performance.

106 107

Npart

0

2

4

6

8

10

12

14

p
ar

ti
cl

es
p

er
se

co
n

d

×106

Phantom Epyc7742 (64C)

Shamrock Epyc7742 (64C)

Shamrock A100-SXM4-40GB

Figure 25. Comparative benchmark of Shamrock and Phantom ran on a
same restart file of a Sedov-Taylor blast at multiple resolutions produced by
Phantom. Shamrock does a achieve a slightly higher performance on CPU
compared to Phantom, when run a on a single NVIDIA A100-SXM4-40GB
GPU the performance is around 5 times higher for large datasets. Small
datasets are not large enough to saturate the GPU explaining the lowered
performance on GPU below 106 particles.

the 64 cores (128 threads). The power consumption is also similar to
the one of the A100-SXM4-40GB used for Shamrock (∼ 275W).
For the test described above, one obtains ≳ 2 × 106 particles per
second in most cases. Note that on this Epyc7742 CPU architec-
ture, Shamrock (compiled using AdaptiveCPP OpenMP backend)
achieves slightly higher performance. Despite the limitations inherent
in such a comparison, we estimate that Shamrock attains approxi-
mately a ∼ 5 factor gain in performance when executed on a single
GPU compared to a state-of-the-art SPH CPU code with equivalent
power consumption.

7.4.2 Multiple GPUs

We perform the multi-GPU test of Shamrock on the Adastra su-
percomputer of the French CINES, in its early February 2024 config-
uration. In this multi-GPU test, the split criterion of patches is set at
one-sixth of the number of particles per GPU, guaranteeing a mini-
mum of 8 patches per MPI process. We evolve over 5 time steps of the
Sedov test and report the performance obtained on the last time step.
Unlike in the case of a single GPU, we do not evolve the simulation
prior to measurement to limit computational expenses. The scale at
which internal energy is injected remains consistent across all tests.

Fig. 26 shows that for 65×109 particles distributed over 1000 GPUs
(64 × 106 particles per GPU), Shamrock achieves 9 × 109 particles

MNRAS 000, 1–30 (2024)

26 T. David--Cléris et al.

10 100 1000

GPUs

1

2

3

4

5

6

7

8

9

P
a
rt

ic
le

/
se

co
n

d
s

/
G

P
U

×106

1.34e+06

5.22e+06

6.60e+06

8.52e+06

10 100 1000

GPUs

2500

5000

7500

10000

12500

15000

17500

20000

P
a
rt

ic
le

/
se

co
n

d
s

/
W

a
tt

2.83e+03

1.10e+04

1.39e+04

1.79e+04

10 100 1000

GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
ar

al
le

l
effi

ci
en

cy

0.50

0.75
0.71

0.92

10 100 1000

GPUs

107

108

109

1010

P
ar

ti
cl

e
/

se
co

n
d

s 1.38e+09

5.34e+09
6.76e+09
8.73e+09

2e6 parts / GPUs

16e6 parts / GPUs

32e6 parts / GPUs

64e6 parts / GPUs

Figure 26. Weak scaling tests conducted on the CINES Adastra supercomputer. These tests are performed for multiple resolutions, from 1 node to 256 nodes,
corresponding to using 4 GPUs with 8 MPI ranks to 1024 GPUs with 2048 MPI ranks. In these tests, we use the setup of a Sedov-Taylor blast and report the
number of particles per GPU. The patch decomposition is set to have at least 8 patches per MPI ranks. We observe that for large simulations, the scaling test
results in 92% parallel efficiency on 65 billion particles at 9 billion particle per seconds. Lowering the base resolution reduce the per-GPU performance since
GPUs start to be under-utilised. Additionally the variation of the number of particle per patch result in variation in per-GPU performance, resulting in a saw-tooth
pattern. We also report the energy efficiency of the tests, were the power consumption used was measured in the single node case and extrapolated as being the
product of the number of nodes times the single node consumption.

iterated per second. Consequently, iterating one time step over the
entire 65 × 109 particles requires 7 seconds on this cluster. These
results correspond to around 1.5 times the performance achieved by a
single A100 on the same test at the same commit, a value close to what
is expected given the hardware specifications. This demonstrates no
significant deviation in behaviour attributable to the choice of GPUs.
To achieve good load balancing, we find that we need around 10
patches per MPI process. On Adastra, this translates to 20 patches
per GPU, amounting to a bit over 1 million particles per Mi250x
Graphics Compute Die. Fig. 25 shows that for small number of
particles, the GPU execution units are not loaded efficiently. A correct
load corresponds to a typical 2 millions of particles per GPU. Fig. 26
also reveals saw tooth shape as the number of particles increases.
This feature can be interpreted by noting that every multiple of 8
GPUs, the patches are divided to avoid becoming too large, causing
performance to drop below the efficiency threshold. Efficiency then
increases again with the number of particles, until another factor of
8 in the resolution is reached, necessitating further patch refinement.
Additionally on Fig. 26 we also report the energy efficiency of the
weak scaling tests. We measure on every single nodes tests the power
consumption related to an iteration of the solver using the hardware
counters of the HPE Cray EX235a node. The reported value for

multiple nodes is extrapolated from the single node case assuming a
total power consumption being the product of the number of nodes
times the single node power consumption time the parallel efficiency.
Finally we report the power efficiency measured in particles per
second per Watt which is also the number of particles processes with
a single Joule. The total power consumption of a node in those tests
is not very sensible to the number of particles per GPUs. However
the GPU performance can be significantly reduced when GPUs do
not have enough particle to process, and having a larger number of
particle per GPUs result in the highest efficiency. Maximising the
number of particles per GPU maximises efficiency in most cases.

7.5 Summary

The larger the simulation, the higher the performance per GPU.
Multi-GPU architectures therefore require large simulations to scale
and be energy-efficient. With Shamrock, this effect can be miti-
gated by reducing the number of patches, albeit with the potential
drawback of rising load balancing issues. Similar benchmarks would
be required for further implementations in Shamrock of additional
physical processes or setups, possibly involving different particle
distributions.

MNRAS 000, 1–30 (2024)

Shamrock SPH solver 27

8 PERSPECTIVES

8.1 Multi-physics

Multi-scale astrophysical problems are often multi-physical. To be
consistent, very high-resolution simulations must include realistic
physics. The version of Shamrock discussed in this article focuses
on a purely hydrodynamic SPH solver. Next steps of development
consist of implementing local algorithms to address the radiative
dynamics of magnetised and dusty fluids. In principle, the modu-
lar format of Shamrock facilitates the assembly of a new set of
known numerical equations into a solver. The biggest challenge is
the implementation of gravity, a non-local interaction that requires a
new algorithmic layer based on group-group interactions. Two main
algorithms are used to handle gravity by the various astrophysical
codes. SPH codes mainly use the method of Fast Multipole Mo-
ments (FMM), which takes advantage of the tree structure inherent
in particle methods. The technical hurdle lies in achieving numerical
efficiency, even for high opening angles involving summation over
hundreds or even thousands of neighbours. An alternative approach
is to employ a multigrid method, but to our knowledge this has not
yet been implemented in an SPH code. These additional physical
elements require the implementation of an individual time step to
maximise performance. It will consequently be also possible to take
advantage of Shamrock’s efficiency to benchmark individual time
stepping against fixed time stepping in simulations that were previ-
ously not tractable.

8.2 Multi-methods

The Shamrock framework relies on the efficient construction and
traversal of its tree, irrespective of the numerical object considered. In
this study, we have considered particles to develop an SPH solver, but
these can be replaced by Eulerian cells in an agnostic way. Since the
tree algorithm of Shamrock scales almost perfectly to any disordered
particle distribution, we can expect similar performance, even on
an AMR (Adaptive Mesh Refinement) grid. In principle, various
algorithms can be implemented on this grid (such as finite differences
or finite volumes), with the moderate cost of incorporating a few
specific modules tailored to these solvers (like the accumulation of
flows on faces for finite volumes).

The advantages of such a unified framework are twofold. Firstly, to
validate an astrophysical model by achieving consistent results with
inherently different methods, while the physical model used is rig-
orously identical (e.g. opacities, cooling rates, resistivities, chemical
networks, equations of state). Secondly, to enable rigorous evaluation
of numerical methods in terms of accuracy and computational effi-
ciency for specific numerical problems. To our knowledge, no such
framework currently exists.

8.3 Data analysis

The efficiency of the Shamrock tree means that data analyses can
be carried out very efficiently, whether on particles, cells or both. We
plan to develop a native library that will enable these analyses to be
performed efficiently on multi-GPU parallel architectures.

8.4 Optimisation of latencies

Finally, the Shamrock framework has been designed to optimise per-
formance on multi-node architectures. As discussed in the previous

section, specificities of modern hardware imply that performance in-
creases with the computational load demanded of the GPUs. Maybe
counter-intuitively, Shamrock is therefore not designed by default
to run small simulations with a large number of iterations. Since
efficient execution of such simulations remains a complementary
challenge to that of Exascale, a layer of optimisations regarding rem-
nant latencies remains to be implemented. This would enable users
to employ Shamrock for both small and large-scale simulations. We
will benefit from the knowledge of the work done by the Gromacs
team towards optimising latencies in SYCL (Alekseenko et al. 2024).

9 CONCLUSION

We introduced Shamrock, a modular and versatile framework de-
signed to run efficiently on multi-GPUs architectures, towards Ex-
ascale simulations. The efficiency of Shamrock is due to its tree,
based on a fully parallel binary logic (Karras algorithm). On a single
GPU of an A100, the algorithm builds a tree for 200 million particles
in one second. The tree traversal speed, while summing over approx-
imately 60 neighbours, reaches 12 million particles per second per
GPU. This property makes it possible to build a Smoothed Particle
Hydrodynamics (SPH) solver where neighbours are not stored but
recalculated on the fly, reconstructing a tree almost instantaneously.

To exploit the efficiency of this framework, we have implemented
and tested an hydrodynamic SPH solver in Shamrock. For a Sedov
test performed with 106 particles on a single A100 GPU, a Sham-
rock simulation is around ∼6 times faster than an identical simu-
lation performed with Phantom on an Epic 7742 multicore CPU
architecture of equivalent power. The parallelisation of Shamrock
on several nodes relies on an MPI protocol with hollow communica-
tions between the interfaces of a patch system that groups calculations
performed on different GPUs. Shamrock ’s scaling has been tested
on the Adastra supercomputer (2000 mi250x GPUs). As expected,
the higher the computational load on the GPU, the better the effi-
ciency of the code. For 32 × 106 particles per GPU and 65 billions
of particles in total, we achieve 92% efficiency at low scaling, in a
simulation where 9 × 109 particles are iterated per second. Iterating
one time step over the 65×109 particles takes therefore 7 seconds on
this architecture. Shamrock is therefore a promising framework that
will soon be extended to other grid-based algorithms with adaptive
refinement.

ACKNOWLEDGEMENTS

We warmly thank G. Lesur for guidance on the use of multiple
GPU systems, and advices on Grid-5000 for prototyping, as well
as on the Adastra cluster. We also thank A. Alpay (AdaptiveCPP)
and A. Alekseenko (Gromacs) for guidance on the use of SYCL
and related optimizations, F. Lovascio, B. Commerçon, L. Sewanou,
J. Fensch, A. Durocher and L. Marchal for useful comments and
discussions, E. Quemener and the Centre Blaise Pascal de Simulation
et de Modélisation Numérique for support on the benchmarks, the
ENS de Lyon for partly funding the DGX Nvidia Workstation and the
electric costs associated to local simulations, the CINES for having
granted access and support for the Adastra machine during the
duration of the Adastra GPU hackaton in Feb. 2024, and in particular
E. Malaboeuf, J.-Y. Vet for technical discussions. A. Charlet, E.
Lynch, R. Lenoble for comments on the manuscript. The Shamrock
code follows the developments of the WP 5.1 of the Programme
et équipements prioritaires de recherche (PEPR) Origins (PI: A.

MNRAS 000, 1–30 (2024)

28 T. David--Cléris et al.

Morbidelli). We acknowledge funding from the ERC CoG project
PODCAST No 864965.

DATA AVAILABILITY

The relevant sources can be found in the Github repository of the
code (https://github.com/Shamrock-code/Shamrock)

REFERENCES

Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl
E., 2015, SoftwareX, 1, 19

Adinets A., Merrill D., 2022, arXiv preprint arXiv:2206.01784
Alekseenko A., Páll S., 2023, in Proceedings of the 2023 International

Workshop on OpenCL. IWOCL ’23. Association for Computing Ma-
chinery, New York, NY, USA, doi:10.1145/3585341.3585350, https:
//doi.org/10.1145/3585341.3585350

Alekseenko A., Páll S., Lindahl E., 2024, arXiv preprint arXiv:2405.01420
Alpay A., Heuveline V., 2020, in Proceedings of the International Work-

shop on OpenCL. IWOCL ’20. Association for Computing Machinery,
New York, NY, USA, doi:10.1145/3388333.3388658, https://doi.
org/10.1145/3388333.3388658

Alpay A., Soproni B., Wünsche H., Heuveline V., 2022, in International
Workshop on OpenCL. IWOCL’22. Association for Computing Ma-
chinery, New York, NY, USA, doi:10.1145/3529538.3530005, https:
//doi.org/10.1145/3529538.3530005

Arkhipov D. I., Wu D., Li K., Regan A. C., 2017, arXiv e-prints, p.
arXiv:1709.02520

Balsara D. S., 1995, Journal of Computational Physics, 121, 357
Batcher K. E., 1968, in Proceedings of the April 30–May 2,

1968, Spring Joint Computer Conference. AFIPS ’68 (Spring).
Association for Computing Machinery, New York, NY, USA,
p. 307–314, doi:10.1145/1468075.1468121, https://doi.org/10.
1145/1468075.1468121

Bedorf J., Portegies Zwart S., 2020, SciPost Astronomy, 1, 001
Blelloch G. E., 1990, School of Computer Science, Carnegie Mellon Univer-

sity Pittsburgh, PA, USA
Chow E., Monaghan J. J., 1997, Journal of Computational Physics, 134, 296
Courant R., Friedrichs K., Lewy H., 1928, Mathematische Annalen, 100, 32
Cullen L., Dehnen W., 2010, MNRAS, 408, 669
Deakin T., McIntosh-Smith S., 2020, in Proceedings of the International

Workshop on OpenCL. IWOCL ’20. Association for Computing Ma-
chinery, New York, NY, USA, doi:10.1145/3388333.3388643, https:
//doi.org/10.1145/3388333.3388643

Dehnen W., Aly H., 2012, MNRAS, 425, 1068
Gafton E., Rosswog S., 2011, MNRAS, 418, 770
Gingold R. A., Monaghan J. J., 1977, MNRAS, 181, 375
Grete P., et al., 2022, arXiv e-prints, p. arXiv:2202.12309
Hairer E., Lubich C., Wanner G., 2003, Acta Numerica, 12, 399
Hopkins P. F., 2014, GIZMO: Multi-method magneto-

hydrodynamics+gravity code, Astrophysics Source Code Library,
record ascl:1410.003

Hopkins P. F., 2015, MNRAS, 450, 53
Horn D., 2005, Gpu gems, 2, 573
Hubber D. A., Batty C. P., McLeod A., Whitworth A. P., 2011, A&A, 529,

A27
Jakob W., Rhinelander J., Moldovan D., 2024, URL: https://github.

com/pybind/pybind11
Jin Z., Vetter J. S., 2022, in Proceedings of the 13th ACM Interna-

tional Conference on Bioinformatics, Computational Biology and Health
Informatics. BCB ’22. Association for Computing Machinery, New
York, NY, USA, doi:10.1145/3535508.3545591, https://doi.org/
10.1145/3535508.3545591

Karras T., 2012, in Proceedings of the Fourth ACM SIG-
GRAPH/Eurographics conference on High-Performance Graphics. pp
33–37

Landshoff R., 1955, Technical report, A numerical method for treating fluid
flow in the presence of shocks. Los Alamos National Lab.(LANL), Los
Alamos, NM (United States)

Lattanzio J., Monaghan J., Pongracic H., Schwarz M., 1986, SIAM Journal
on Scientific and Statistical Computing, 7, 591

Lattner C., Adve V., 2004, in International Symposium on Code
Generation and Optimization, 2004. CGO 2004.. pp 75–86,
doi:10.1109/CGO.2004.1281665

Lauterbach C., Garland M., Sengupta S., Luebke D. P., Manocha D., 2009,
Computer Graphics Forum, 28

Lesur G. R. J., Baghdadi S., Wafflard-Fernandez G., Mauxion J., Robert
C. M. T., Van den Bossche M., 2023, arXiv e-prints, p. arXiv:2304.13746

Lodato G., Price D. J., 2010, MNRAS, 405, 1212
Lucy L. B., 1977, AJ, 82, 1013
Margolin L. G., Lloyd-Ronning N. M., 2022, arXiv e-prints, p.

arXiv:2202.11084
Markomanolis G. S., et al., 2022, in Supercomputing Frontiers: 7th Asian

Conference, SCFA 2022, Singapore, March 1–3, 2022, Proceedings.
Springer-Verlag, Berlin, Heidelberg, p. 79–101, doi:10.1007/978-3-031-
10419-0_6, https://doi.org/10.1007/978-3-031-10419-0_6

Merrill D., Garland M., 2016, NVIDIA, Tech. Rep. NVR-2016-002
Monaghan J. J., 1997a, Journal of Computational Physics, 136, 298
Monaghan J. J., 1997b, Journal of Computational Physics, 136, 298
Monaghan J. J., 2002, MNRAS, 335, 843
Monaghan J. J., Price D. J., 2001, MNRAS, 328, 381
Morris J. P., 1996, PhD thesis, -
Morris J. P., Monaghan J. J., 1997, Journal of Computational Physics, 136,

41
Morton G. M., 1966, International Business Machines Company New York
Nassimi Sahni 1979, IEEE Transactions on Computers, C-28, 2
Noh W. F., 1987, Journal of Computational Physics, 72, 78
Price D. J., 2008, Journal of Computational Physics, 227, 10040
Price D. J., 2012, Journal of Computational Physics, 231, 759
Price D. J., Federrath C., 2010, MNRAS, 406, 1659
Price D. J., et al., 2018, Publ. Astron. Soc. Australia, 35, e031
Quemener E., Corvellec M., 2013, Linux Journal, 2013, 3
Samet H., 2006, Foundations of multidimensional and metric data structures.

Morgan Kaufmann
Schaal K., Bauer A., Chandrashekar P., Pakmor R., Klingenberg C., Springel

V., 2015, MNRAS, 453, 4278
Schaller M., Gonnet P., Draper P. W., Chalk A. B. G., Bower R. G., Willis J.,

Hausammann L., 2018, SWIFT: SPH With Inter-dependent Fine-grained
Tasking, Astrophysics Source Code Library, record ascl:1805.020

Schoenberg I. J., 1946, Quarterly of Applied Mathematics, 4, 45
Sedov L. I., 1959, Similarity and Dimensional Methods in Mechanics
Seliger R. L., Whitham G. B., 1968, Proceedings of the Royal Society of

London. Series A. Mathematical and Physical Sciences, 305, 1
Sod G. A., 1978, Journal of Computational Physics, 27, 1
Springel V., Hernquist L., 2002, MNRAS, 333, 649
Springel V., Pakmor R., Zier O., Reinecke M., 2021, MNRAS, 506, 2871
Taylor G., 1950a, Proceedings of the Royal Society of London Series A, 201,

159
Taylor G., 1950b, Proceedings of the Royal Society of London Series A, 201,

175
Tricco T. S., 2019, MNRAS, 488, 5210
Trott C., et al., 2021, Computing in Science and Engineering, 23, 10
Verlet L., 1967, Physical Review, 159, 98
Von Neumann J., Richtmyer R. D., 1950, Journal of Applied Physics, 21, 232
Wadsley J. W., Stadel J., Quinn T., 2004, New Astron., 9, 137
Wendland H., 1995, Advances in computational Mathematics, 4, 389
Wibking B. D., Krumholz M. R., 2022, MNRAS, 512, 1430

MNRAS 000, 1–30 (2024)

https://github.com/Shamrock-code/Shamrock
http://dx.doi.org/10.1145/3585341.3585350
https://doi.org/10.1145/3585341.3585350
https://doi.org/10.1145/3585341.3585350
http://dx.doi.org/10.1145/3388333.3388658
https://doi.org/10.1145/3388333.3388658
https://doi.org/10.1145/3388333.3388658
http://dx.doi.org/10.1145/3529538.3530005
https://doi.org/10.1145/3529538.3530005
https://doi.org/10.1145/3529538.3530005
http://dx.doi.org/10.48550/arXiv.1709.02520
https://ui.adsabs.harvard.edu/abs/2017arXiv170902520A
https://ui.adsabs.harvard.edu/abs/2017arXiv170902520A
http://dx.doi.org/10.1016/S0021-9991(95)90221-X
https://ui.adsabs.harvard.edu/abs/1995JCoPh.121..357B
http://dx.doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.21468/SciPostAstro.1.1.001
https://ui.adsabs.harvard.edu/abs/2020SciPA...1....1B
http://dx.doi.org/10.1006/jcph.1997.5708
https://ui.adsabs.harvard.edu/abs/1997JCoPh.134..296C
http://dx.doi.org/10.1007/BF01448839
https://ui.adsabs.harvard.edu/abs/1928MatAn.100...32C
http://dx.doi.org/10.1111/j.1365-2966.2010.17158.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.408..669C
http://dx.doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3388333.3388643
http://dx.doi.org/10.1111/j.1365-2966.2012.21439.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.425.1068D
http://dx.doi.org/10.1111/j.1365-2966.2011.19528.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.418..770G
http://dx.doi.org/10.1093/mnras/181.3.375
https://ui.adsabs.harvard.edu/abs/1977MNRAS.181..375G
http://dx.doi.org/10.48550/arXiv.2202.12309
https://ui.adsabs.harvard.edu/abs/2022arXiv220212309G
http://dx.doi.org/10.1017/S0962492902000144
https://ui.adsabs.harvard.edu/abs/2003AcNum..12..399H
http://dx.doi.org/10.1093/mnras/stv195
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450...53H
http://dx.doi.org/10.1051/0004-6361/201014949
https://ui.adsabs.harvard.edu/abs/2011A&A...529A..27H
https://ui.adsabs.harvard.edu/abs/2011A&A...529A..27H
http://dx.doi.org/10.1145/3535508.3545591
https://doi.org/10.1145/3535508.3545591
https://doi.org/10.1145/3535508.3545591
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.48550/arXiv.2304.13746
https://ui.adsabs.harvard.edu/abs/2023arXiv230413746L
http://dx.doi.org/10.1111/j.1365-2966.2010.16526.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.405.1212L
http://dx.doi.org/10.1086/112164
https://ui.adsabs.harvard.edu/abs/1977AJ.....82.1013L
http://dx.doi.org/10.48550/arXiv.2202.11084
https://ui.adsabs.harvard.edu/abs/2022arXiv220211084M
https://ui.adsabs.harvard.edu/abs/2022arXiv220211084M
http://dx.doi.org/10.1007/978-3-031-10419-0_6
http://dx.doi.org/10.1007/978-3-031-10419-0_6
https://doi.org/10.1007/978-3-031-10419-0_6
http://dx.doi.org/10.1006/jcph.1997.5732
https://ui.adsabs.harvard.edu/abs/1997JCoPh.136..298M
http://dx.doi.org/10.1006/jcph.1997.5732
https://ui.adsabs.harvard.edu/abs/1997JCoPh.136..298M
http://dx.doi.org/10.1046/j.1365-8711.2002.05678.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.335..843M
http://dx.doi.org/10.1046/j.1365-8711.2001.04742.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.328..381M
http://dx.doi.org/10.1006/jcph.1997.5690
https://ui.adsabs.harvard.edu/abs/1997JCoPh.136...41M
https://ui.adsabs.harvard.edu/abs/1997JCoPh.136...41M
http://dx.doi.org/10.1109/TC.1979.1675216
http://dx.doi.org/10.1016/j.jcp.2008.08.011
https://ui.adsabs.harvard.edu/abs/2008JCoPh.22710040P
http://dx.doi.org/10.1016/j.jcp.2010.12.011
https://ui.adsabs.harvard.edu/abs/2012JCoPh.231..759P
http://dx.doi.org/10.1111/j.1365-2966.2010.16810.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.406.1659P
http://dx.doi.org/10.1017/pasa.2018.25
https://ui.adsabs.harvard.edu/abs/2018PASA...35...31P
http://dx.doi.org/10.1093/mnras/stv1859
https://ui.adsabs.harvard.edu/abs/2015MNRAS.453.4278S
http://dx.doi.org/10.1016/0021-9991(78)90023-2
https://ui.adsabs.harvard.edu/abs/1978JCoPh..27....1S
http://dx.doi.org/10.1046/j.1365-8711.2002.05445.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.333..649S
http://dx.doi.org/10.1093/mnras/stab1855
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.2871S
http://dx.doi.org/10.1098/rspa.1950.0049
https://ui.adsabs.harvard.edu/abs/1950RSPSA.201..159T
https://ui.adsabs.harvard.edu/abs/1950RSPSA.201..159T
http://dx.doi.org/10.1098/rspa.1950.0050
https://ui.adsabs.harvard.edu/abs/1950RSPSA.201..175T
https://ui.adsabs.harvard.edu/abs/1950RSPSA.201..175T
http://dx.doi.org/10.1093/mnras/stz2042
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.5210T
http://dx.doi.org/10.1109/MCSE.2021.3098509
https://ui.adsabs.harvard.edu/abs/2021CSE....23e..10T
http://dx.doi.org/10.1103/PhysRev.159.98
https://ui.adsabs.harvard.edu/abs/1967PhRv..159...98V
http://dx.doi.org/10.1063/1.1699639
https://ui.adsabs.harvard.edu/abs/1950JAP....21..232V
http://dx.doi.org/10.1016/j.newast.2003.08.004
https://ui.adsabs.harvard.edu/abs/2004NewA....9..137W
http://dx.doi.org/10.1093/mnras/stac439
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.1430W

Shamrock SPH solver 29

APPENDIX A: SOFTWARE DESIGN

A1 Development

A1.1 Codebase organisation

The Shamrock project aims to be fully modular, in the sense that
it is made up of several cmake projects which are connected us-
ing standardised interfaces. For example, the algorithmic library of
Shamrock is a cmake sub-project that depends on the backend li-
brary. This allows the shamrock sub-projects to be as independent as
possible, avoiding merge conflicts and enabling development efforts
to be better focused. To date, the project comprises 12 sub-projects.
This number is very likely to change in the future, with future addi-
tions and refactoring.

A1.2 Git

The Shamrock project is hosted on GitHub. We adopt a methodol-
ogy akin to the one employed by the LLVM project (Lattner & Adve
2004), where the main branch is protected and can only be modified
by pull requests from the feature/fix branches from contributors forks
of the project. Releases are performed by branching from the main
branch, facilitating the implementation of fixes to existing versions
of the code. The CI test pipeline is routinely executed on GitHub,
assessing both the main branch and all incoming pull requests. Suc-
cessful completion of all tests is mandatory for changes to be merged
into the main branch.

A2 Testing

Numerous unit testing and validation options are available for C++.
However, none of the standard solutions available match our specific
requirements, the main one being that tests are integrated with MPI .
Because of this constraint, we have developed our own in-house test
library, designed to provide the main features of gtest, while retain-
ing the ability to specify the number of MPI ranks for a particular
test. The current test library is capable of performing unittest, valida-
tion tests, and benchmarks. On GitHub, we use self-hosted runners to
perform the tests with multiple configurations of compilers, targets
and versions.

A3 Environment scripts

Compiling Shamrock on different machines entails dealing with a
wide range of diversity. Typical technical aspects involve setting up
LLVM, MPI and SYCL, which may involve numerous steps on a
machine with missing libraries or having complex configuration. To
ensure consistency in Shamrock configuration across machines, we
have designed environment scripts. These scripts aim to produce a
build directory with all the requirements for building the code, as
well as to provide an ‘activate’ script in this folder, which configures
the environment variable and loads the correct modules by sourcing
them. In addition, these scripts offer utility functions such as

• setupcompiler: Setup the SYCL compiler
• updatecompiler: Update the environment
• shamconfigure: Configure Shamrock
• shammake: Build Shamrock

This functionality is provided by a ‘new-env’ script that configures
the build directory with all requirements, including the compiler
SYCL, automatically. In summary, only 5 commands are needed to
build a working version of Shamrock, an example would be

import shamrock

Create a Shamrock context
ctx = shamrock.Context()
ctx.pdata_layout_new()

Get the SPH model
model = shamrock.get_SPHModel(

context = ctx,
vector_type = "f64_3",
sph_kernel = "M6")

configure the solver
cfg = model.gen_default_config()
cfg.set_artif_viscosity_VaryingCD10(

alpha_min = 0.0,
alpha_max = 1,
sigma_decay = 0.1,
alpha_u = 1,
beta_AV = 2)

cfg.set_boundary_periodic()
cfg.set_eos_adiabatic(gamma = 5./3.)
cfg.print_status()

model.set_solver_config(cfg)
model.set_cfl_cour(0.3)
model.set_cfl_force(0.25)

Initialise the patch scheduler
model.init_scheduler(

split_crit = 1e6,
merge_crit = 1e4)

.... Do setup

Run the simulation until t=1 and dump
t_end = 1.0
model.evolve_until(t_end)
dump = model.make_phantom_dump()
dump.save_dump("output")

Figure A1. Example of a simplified Shamrock runscript

Setup the environment
./env/new-env \

--builddir build \
--machine debian-generic.acpp \
-- \
--backend cuda \
--arch sm_70

Now move in the build directory
cd build
Activate the workspace, which will
define some utility functions
source activate
Configure Shamrock
shamconfigure
Build Shamrock
shammake

A4 Runscripts

In Shamrock, our aim is to handle setup files and configuration
files that would allow great versatility in the use of the code, as well
as on-the-fly analysis. Handling such a complexity through configu-
ration files alone is both difficult and non-standard. Moreover, a user
should not be required to know C++ to be able to use the code. Using
a Python frontend offers a suitable solution to ensure both code
versatility and ease of use. To do this, we use pybind11 (Jakob et al.
2024), which allows to map C++ functions or classes from the C++
source code to a ‘shamrock’ python library. In the current version

MNRAS 000, 1–30 (2024)

30 T. David--Cléris et al.

of Shamrock, two uses are possible. The first is to use Shamrock
as a python interpreter that will go through and execute the content
of a runscript (the script of a Shamrock run), which can include,
if desired, configuration, simulation and post-processing in a single
run and script (see Fig. A1 for an example of a runscript).

The other use is to compile Shamrock as a Python library and
install it through pip, enabling the code to be used in Jupyter note-
books. Using Shamrock as a Python library is ideal for local machine
prototyping, while on a cluster, employing Shamrock as a Python
interpreter is highly recommended.

A5 Units

In Shamrock we have chosen to use code units which are a rescaling
of base SI units, where the factor is chosen at runtime in the runscript.

APPENDIX B: AABB EXTENSION/INTERSECTION
PERMUTATION

We prove the following theorem:

𝐴𝐴𝐵𝐵1 ⊕ ℎ ∩ 𝐴𝐴𝐵𝐵2 ≠ ∅ ⇔ 𝐴𝐴𝐵𝐵1 ∩ 𝐴𝐴𝐵𝐵2 ⊕ ℎ ≠ ∅,

where 𝐴𝐴𝐵𝐵 ⊕ 𝑙 is the operation that extends the AABB in every
direction by a distance 𝑙. One initial observation is that an AABB is
equivalent to a ball defined using the infinity norm | | · | |∞. Conse-
quently, the intersection of two AABBs is the result of intersecting
along each axis independently. Formally, define a first AABB 1 as the
Cartesian product of three intervals 𝐴𝐴𝐵𝐵1 = 𝐼1,𝑥 × 𝐼1,𝑦 × 𝐼1,𝑧 , and
a second AABB as 𝐴𝐴𝐵𝐵2 = 𝐼2,𝑥 × 𝐼2,𝑦 × 𝐼2,𝑧 . Their intersection
is 𝐴𝐴𝐵𝐵1 ∩ 𝐴𝐴𝐵𝐵2 = (𝐼1,𝑥 ∩ 𝐼2,𝑥) × (𝐼1,𝑦 ∩ 𝐼2,𝑦) × (𝐼1,𝑧 ∩ 𝐼2,𝑧).
Hence, proving the theorem in one dimensions directly extends
to three dimensions. Consider now two one-dimensional intervals
𝐼1 = [𝛼1, 𝐴1], 𝐼2 = [𝛽1, 𝐵1]. With 𝑑 (𝑎, 𝑏) the distance in one di-
mension between a point 𝑎 and 𝑏, and 𝐵(𝑟, ℎ) being a ball in one
dimension of position 𝑟 and radius ℎ, we have

∅ ≠ 𝐼1 ⊕ ℎ ∩ 𝐼2

⇔ ∅ ≠ [𝛼1 − ℎ, 𝐴1 + ℎ] ∩ [𝛽1, 𝐵1]

⇔ ∅ ≠ 𝐵

(
𝐴1 + 𝛼1

2
,
𝐴1 − 𝛼1

2
+ ℎ

)
∩ 𝐵

(
𝐵1 + 𝛽1

2
,
𝐵1 − 𝛽1

2

)
⇔ 𝑑

(
𝐴1 + 𝛼1

2
,
𝐵1 + 𝛽1

2

)
≤ 𝐴1 − 𝛼1

2
+ ℎ + 𝐵1 − 𝛽1

2

⇔ ∅ ≠ 𝐵

(
𝐴1 + 𝛼1

2
,
𝐴1 − 𝛼1

2

)
∩ 𝐵

(
𝐵1 + 𝛽1

2
,
𝐵1 − 𝛽1

2
+ ℎ

)
⇔ ∅ ≠ [𝛼1, 𝐴1] ∩ [𝛽1 − ℎ, 𝐵1 + ℎ]
⇔ ∅ ≠ 𝐼1 ∩ 𝐼2 ⊕ ℎ,

which completes the proof.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–30 (2024)

	Introduction
	The Shamrock framework
	Modular computational fluid dynamics
	Multi-GPUs architectures: choice of languages and standards
	Elements of software design

	Domain decomposition & MPI
	Simulation box
	Patch decomposition
	Data Structure
	Scheduler step
	Load balancing strategies
	Patch interactions
	Serialisation
	Sparse MPI communications

	The Shamrock tree
	Morton codes
	Prefixes
	Bounding boxes
	Longest common prefix length
	Finding common prefixes
	Getting coordinates sizes of bounding boxes
	Binary radix tree
	Karras algorithm
	Removal of duplicated codes
	Reduction
	Tree building
	Tree traversal
	Direct neighbour cache
	Two-stages neighbour cache

	Smoothed Particle Hydrodynamics in Shamrock
	Equations of motion
	Shock detection
	SPH interaction criterion
	Adaptive smoothing length
	Time stepping

	Physical tests
	Generalities
	Advection
	Sod tube
	Sedov-Taylor blast
	Kelvin-Helmholtz instability
	Conformance with Phantom
	Summary

	Performance
	Characteristics of the benchmarks
	Performance of tree building
	Performance of neighbour cache building
	Performance of time stepping
	Summary

	Perspectives
	Multi-physics
	Multi-methods
	Data analysis
	Optimisation of latencies

	Conclusion
	Software design
	Development
	Testing
	Environment scripts
	Runscripts
	Units

	AABB extension/intersection permutation

